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ABSTRACT 

 
We present a method for estimating the instantaneous frequency of the multi-component signals. This 
method involves the calculation of a time-frequency energy density of the signal, then obtaining an 
instantaneous frequency estimation from this joint density. Time-frequency energy density is 
calculated as a least squares optimal combination of multi-window Gabor based evolutionary spectra. 
The optimal weights are obtained by minimizing an error criterion that is the difference between a 
reference time-frequency distribution and the combination of evolutionary spectra. Instantaneous 
frequency of the signal is estimated from the final evolutionary spectrum as time conditional average 
frequency at local time-frequency regions. Examples are given to illustrate the performance of our 
method. 
 
Keywords: Instantaneous frequency, Time-frequency analysis, Evolutionary spectrum, Multi-
component signals. 
 
1. INTRODUCTION 
 
Instantaneous frequency (IF) of a signal, ω(t), is 
defined as the derivative of the phase of its 
corresponding analytic signal, 

 [1]. Moreover, from a joint 
time-frequency (TF) perspective, the IF of a 
signal is defined as the average of frequencies at 
a given time (or time conditional mean 
frequency) [2]: 
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is the density in time ))(( 2tx or time marginal 

of the TF density ),( ωtS . Estimating the IF of 
a signal is an important issue in many signal 
processing applications such as communications,  
radar, bioengineering, etc. [3,4]. For instance, in 
spread spectrum communication systems, 
jammers can be eliminated by estimating their IF 
and removing them by a time-varying filter [5]. 
In our approach the IF is estimated using a least 
squares multi-window evolutionary spectrum as 
the TF energy density for the signal.  
TF signal analysis is a helpful tool for analyzing 
the time-varying frequency content of a non-
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stationary signal [2]. The Wigner-Ville Spectrum 
(WVS) is defined as a time-dependent spectrum 
for non-stationary stochastic process  and 
given by [6]: 
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where ),( ωtW  denotes the Wigner Distribution 
(WD) and the above is the statistical average of 
the WDs of the realizations of the process. When 
we have several observations of the non-
stationary process , we can use an ensemble 
average of the individual WDs of these 
observations to estimate the WVS. However, this 
is not the case in general; we are only given a 
single realization of the process. In that case, 
Time-Frequency Distributions (TFDs) with a 
smoothing kernel function is used to estimate the 
WVS [2]. A good amount of research has been 
done to design kernels with desired properties 
yielding unbiased and low variance WVS 
estimates [6, 8]. 

)(tx

A new estimate of the WVS is proposed as the 
optimal average of multiple-window 
spectrograms of the process in [9, 10]. In this 
work we use a WVS estimate that is an optimal 
combination of evolutionary spectra obtained by 
a multi-window Gabor expansion [7]. The 
optimal combination coefficients are obtained by 
minimizing the squared error between a 
reference TFD (which is taken to be the Wigner-
Ville Distribution of the signal) and the multi-
window spectral estimate.  
 
2. EVOLUTIONARY SPECTRAL 
ANALYSIS  
 
Given a non-stationary signal, 10),( −≤≤ Nnnx , 
a discrete Wold-Cramer representation [12] for it 
is given by 
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where K
k

k
πω 2= , K is the number of 

frequency samples, and ),( knA ω  is an 
evolutionary kernel. The evolutionary spectrum 

is obtained from this kernel as 
2),(1),( kk nA

K
nS ωω = . In [7] it has been 

shown that the kernel can be obtained from the 
coefficients of a Gabor expansion. The multi-
window Gabor expansion is given by [7] 
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where { }kmia ,,  are the Gabor coefficients, 

{ }kmih ,, are the Gabor basis functions that are 
obtained from a Gauss window function by 
scaling, translating and modulating: 
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and the synthesis window  is obtained by 

scaling a unit-energy mother window  as 
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The multi-window Gabor coefficients are 
evaluated by 
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where the analysis window )(niγ  is solved 
from the bi-orthogonality condition between 

 and )(nhi )(niγ   [7]. Hence by comparing the 
representations of the signal in (3) and (4) we 
obtain the evolutionary kernel as  
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Replacing for the coefficients { }kmia ,, , we 
obtain also that 
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where we defined the time-varying window for 
scale  as i
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Then the evolutionary spectrum of  

calculated using the window is obtained 
by 

)(nx
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where the factor K
1  is used for proper energy 

normalization. We should mention that 
normalizing the  to unit energy, the 
total energy of the signal is preserved thus 
justifying the use of 

),( lnwi

),( ki nS ω  as a TF energy 

density for . Furthermore, )(nx ),( ki nS ω  is 
always non-negative and approximates the 
marginal conditions [2]; hence, in contrast to 
many TFDs, interpretable as TF energy density 
function [7]. 
 
3. IF ESTIMATION 
 
Estimation of instantaneous frequency is a 
complex and not well understood task [1,13]. 
Conventionally, the IF of a mono-component 
signal is obtained from its time–frequency 
distribution function as the average of 
frequencies present in the signal at a given time 
[2]. For a multi-component signal such a 
computation of the IF does not have the same 
significance [1]. Furthermore, the usual 
definition of the IF being the derivative of the 
phase of the corresponding analytical signal fails 
(or do not approach our intuition) in the case of 
multi-component signals. The evolutionary 
spectrum can be used to obtain a general 
definition of IF by considering the signal x(n) as 
a sum of analytic signals with time-dependent 
magnitudes and phases, that is  
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where Ψ(n,ωk) = Arg [X(n,ωk)] + ωk n. 
Computing Ψ(n,ωk) only where | X(n,ωk) | is 
significant, a general instantaneous frequency 
function is defined as:  

 
IF( ) ( ) ( 1 )k kn n nω ω ω, = Ψ , −Ψ − , .  (9) 

 
This can be accomplished by determining the 
instantaneous phase at the peaks of the spectra. 
On the other hand, as we will see, decomposing 
the signal into its components , 
these are analytic functions that will also provide 
the instantaneous frequency. 

( )( ) kj n
kX n e ωω Ψ ,| , |

Consider a multi-component signal. The 
estimation of the signal IF is complicated by the 
multi-component nature of the signal. We need 
thus to separate the different components. The 
estimation is especially difficult at places where 
there is overlap of the spectra of the signal 
components.  
 
4. IF ESTIMATION BY LEAST 
SQUARES EVOLUTIONARY 
SPECTRUM 
 
Given a realization of a discrete-time, 
nonstationary process corrupted by additive 
noise )()()( nnsnx η+=  where  and )(ns

)(nη  denotes the signal and noise processes 
respectively. We intend to obtain a high 
resolution evolutionary spectral estimate with 
good performance in low signal to noise ratio 
(SNR) conditions such that the IF of the signal 

 can be estimated. We calculate a weighted )(ns
average combination of evolutionary spectra 

),( ki nS ω  that is closest to a reference TFD in 

a least squares sense. Given the signal , we )(nx
calculate evolutionary spectra ),( ki nS ω  for 

1,...,1,0 −= Ii  as 
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Gauss windows are used as , for their 
optimal concentration in the TF plane [7]. Then 
we estimate the WVS of the process  as a 
weighted average of the evolutionary spectra  
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where the weights { }ic  are obtained by 
minimizing the error function  

21
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and ),( kR nP ω  is a reference TFD which is 
taken here as Wigner-Ville Distribution of the 
signal for its optimal TF resolution. 
By using a matrix notation, the minimization 
problem in (12) can be rewritten as  

                  
2min ScPRci

−                       (13) 
The solution of this least squares minimization 
problem is 
 

R
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where the superscript '  stands for optimum.  
Then a WVS estimate is obtained as optimal 
weighted average using 

'o

{ }o
ic  in equation (11). 

Finally, we mask or threshold our estimate 

to eliminate any possible negative 

values caused by any negative coefficient, 
and result in a non-negative time-varying 
spectrum, i.e., 
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where  denotes the positive-only part 

of the spectrum. Then the Local IF, 

+),(ˆ
knP ω

),( knIF ω , 
of the multi-component signals can be calculated 
from this TF density according to equation (1) as 
time conditional mean frequency in PxQ 
dimensional small TF regions of this TF density: 
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 In our simulations we obtain both TF density 
and Local IF estimate of several nonstationary 
signals. 
 
 

5. EXAMPLES 
 
To illustrate the performance of our proposed  
method, we consider two chirp signals. In Fig.1, 
we show the least squares evolutionary spectral 

estimate  which is obtained by using +),(ˆ
knP ω

4=I  windows. Fig. 2 shows the global IF 
estimate obtained from this evolutionary 
spectrum.  Notice that the two components of the 
signal cannot be discriminated in the global IF. 
In Fig.3 we show the local IF estimate of this 
two-component signal.  
 
In the second example, we consider the 
combination of a sinusoidal FM signal and a 
sinusoidal signal. Fig. 4 shows the initial least 
squares evolutionary spectral estimate of this two 
component signal. In Fig. 5 we show the global 
IF estimate obtained from the least squares 
evolutionary spectrum. In Fig. 6, we show the 
local IF estimate of this signal.  It can be seen 
from the figures that the local IF estimate can 
resolve the components of the signal.  
 
 

 
Fig. 1.  Least squares spectral estimate. 
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Fig. 2. Global IF estimation 

 

 
Fig. 3. Local IF estimation for multi-component 
signal. 
 

 
Fig. 4. Least squares evolutionary spectral 
estimate. 
 
 

 
Fig. 5. Global IF estimation 
 
As a final example, we consider the combination 
of a sinusoidal FM and two chirp signals. In 
Fig.7 we show the least squares evolutionary 
spectral estimate of this three-component signal. 
Fig.8 shows the global IF estimate obtained from 
the least squares evolutionary spectrum. Fig. 9 
shows the local IF estimate. As shown, the 
proposed evolutionary spectrum based local IF 
estimation method gives better estimation results 
than the classic global time-conditional IF 
estimation method. 
 

 
 
Fig. 6. Local IF estimation for multi-component 
signal. 
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Fig. 7. Evolutionary spectral estimate 
 

 
Fig. 8. Global IF estimation 
 

 
Fig. 9. Local IF estimate 
 
 

6. CONCLUSIONS 
 
In this work, we present a new method for 
obtaining the Instantaneous Frequency of non-
stationary multi-component signals. Our method 
uses the optimal combination in the least squares 
sense, of evolutionary spectra that are calculated 
by multi-window Gabor expansion. The optimal 
weights are obtained by minimizing the squared 
error between the combination of evolutionary 
spectra and a reference TFD. Examples show 
that our method combines the advantages of 
multiple-window evolutionary spectral analysis 
and high resolution TFDs, i.e., it provides non-
negative and high resolution time-varying 
spectral estimates. Thus, the local IF estimation 
can give the IF of each component of the signal. 
But with the classic global IF estimation method, 
only one IF function can be obtained for all 
components of the signal. 
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