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Abstract: This paper presents an Improved Differential Evolution (IDE) algorithm to solve Economic Load Dispatch 

(ELD) problem with non-smooth fuel cost curves considering transmission losses, power balance and capacity 

constraints. The proposed IDE varies from the Standard Differential Evolution (SDE) algorithm in terms of three basic 

factors. The initial population in IDE is generated through the concept of Opposition Based Learning (OBL), applies 

tournament based mutation and uses only one population set throughout the optimization process. The performance of 

the proposed algorithm is investigated and tested with two standard test systems, the IEEE 30 bus 6 unit system and the 

20 unit system. The experiments showed that the searching ability and convergence rate of IDE is much better than the 

SDE. The results of the proposed approach were compared in terms of fuel cost, computational time, power loss and 

individual generator powers with existing SDE and other meta-heuristics in literature. The proposed method seems to 

be a promising approach for ELD problems based on the solution quality and the computational efficiency. 

Keywords: Improved Differential Evolution, Standard Differential Evolution, Economic Load Dispatch, solution 

quality, robustness. 

 

 

1. Introduction 
 

Economic Load Dispatch (ELD) is one of the 

most significant optimization problems in modern 

computer aided power system design. The ELD 

problem finds the optimum allocation of load among 

the committed generating units subject to satisfaction 

of power balance and capacity constraints, such that the 

total cost of operation is kept at a minimum [1]. 

Various methods and investigations are being carried 

out until date in order to produce a significant saving in 

the operational cost.  Conventional techniques like 

Lambda Iteration method [2], dynamic programming 

[3], mixed integer programming [4], branch and bound 

[5], gradient-based method, [6] and Newton’s method 

[7] were used earlier to obtain optimal dispatch to the 

ELD problems.  

In lambda iteration and gradient based 

methods, the solution to ELD is obtained by 

approximately representing the cost function for 

individual generators in terms of single quadratic 

function. These techniques require incremental fuel 

cost curves which are piecewise linear and 

monotonically increasing to find the global optimal 

solution [8]. For generators with non-monotonically 

incremental cost curves, conventional methods ignores 

or flattens out portions of incremental cost curve that 

are not continuous or monotonically increasing [9], 

[10]. Newton-based methods are not capable of 

obtaining quality solutions for ELD problems due to 

highly non-linear characteristics and large number of 

constraints. Though dynamic programming is capable 

of solving non-linear and discontinuous problems, it 

suffers from the problem of curse of dimensionality 

with large computational time [11].  

These limitations of conventional methods 

were overcome by modern meta-heuristic approaches 

like Artificial Neural Networks (ANN) [12], Genetic 

Algorithms (GA) [13], Tabu Search (TS) [14], 

Simulated Annealing (SA) [15], Particle Swarm 

Optimization (PSO) [16], Ant colony optimization 

(ACO) [17], Artificial immune systems (AIS) [18], 

Differential Evolution (DE) [19], Bacterial Foraging 

Algorithm (BFA) [20], Intelligent Waterdrop (IWD) 

[8] and Bio-geography based optimization (BBO) [ 21] 

[ 22] algorithms. Though these methods are not capable 

in attaining global best optimal solutions to the ELD 

problems, to a great extent they produce near optimal 

solutions. Later several hybridizations and 

improvements were imposed on the meta-heuristics to 

obtain faster convergence and quality solutions for 

ELD problems. Some of these approaches in literature 

include SA-PSO [23], HQPSO [24], SOH-PSO [25], 

BFA-NM [20], APSO [26], UHGA [27], PSO-CG [28], 

STHDE [29], VSHDE [30], IGAMU [31], DEC-SQP 

[32], and IFEP [33].          

Differential Evolution (DE) is one of the most 

significant optimization technique proposed by Storn 
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and Price [34] to reveal consistent and reliable 

performance in non-linear and multimodal 

environment. They have proved to be efficient for 

constrained optimization problems [35]. In [19], the 

authors proposed the classical DE for solving ELD 

problems with specialized constraint handling 

mechanisms. Khamsawang et. Al.,[36] proposed the 

original DE for ELD with regenerated population 

technique and tuning of parameters. Wang et. Al., [29] 

used the concept of the 1/5 success rule of evolutionary 

strategies in the original Hybrid DE (HDE) to 

accelerate the search for the global optimum in ELD 

problems. The need for fixed and random scale factors 

in HDE was overcome by the work of Chiou et. Al., 

[30], in which a variable scaling factor was added to 

HDE thus improving the search for the global solution 

for ELD problems. Mariani et. Al., [32] proposed a 

hybrid technique that combined the differential 

evolution algorithm with the generator of chaos 

sequences and sequential quadratic programming 

technique. Aniruddha et. Al.,[22] offered a hybrid 

combination of DE with BBO to accelerate the 

convergence speed and to improve the quality of the 

ELD solutions.  

In this paper, we propose an Improved 

Differential Evolution (IDE) algorithm for solving the 

ELD problems. The major improvements made to the 

exisiting standard DE (SDE) are: 

 Initialization –Population initialization is based on 

opposition based learning rather than the random 

method 

 Mutation – The mutant individual is selected based 

on tournament selection 

 Population – Parent and the individuals after 

reproduction are compared based on fitness and 

the better ones are maintained in one population, in 

contrast to two sets in SDE 

The idea of Opposition Based Learning (OBL) 

for DE was proposed by Rahnamayan et.Al., [37]. For 

a problem under consideration, the estimated and the 

opposite of estimated solutions are chosen and it has 

been mathematically proved that opposite numbers to 

the initial set of random numbers are more likely to be 

closer to the optimal solution rather than purely 

random solutions. The advantages of the proposed 

method are convergence speed, robustness, and the 

ease in application of opposite points rather than 

random ones. This paper presents the application of 

IDE to solve the ELD problems of two test systems 

namely IEEE 30 bus 6 unit and 20 unit systems, whose 

generating units are characterized by non-convex 

operational features including transmission losses. 

Solving this practical optimization problem leads to a 

minimized total generation cost of operating the two 

respective power systems in the presence of generator 

capacity and power balance constraints. 

 Section II of this paper provides the 

nomenclature of symbols used and section III presents 

a brief mathematical description of the ELD problem. 

The basic DE, concept of OBL, and proposed IDE are 

explained in Section IV. The experimental results and 

comparative analysis for the two test systems are 

detailed in Section V. The conclusion and future scope 

are presented in Section VI.  

 

 

2. Nomenclature 
 

TF
  

Fuel cost of the system 

iF   Fuel cost of the generating unit 

of the system 

  Power generated in the 
 

generating unit 

N      Number of generators 

iii cba ,,
 

Cost coefficients of the i
th

 generator 

DP
  

Power demand  

LP
  

Transmission losses 

minGiP    Minimum value of the real power 

maxGiP    Maximum value of the real power 

min

jX  Lower bound of initial population for 

j
th

 component 
max

jX  Upper bound of initial population for 

j
th

 component  

NP   Number of individuals in population 

P 

]1,0[rand   Uniform random number in the 

interval [0,1] 

D   Dimension 

P   Initial population  

addP   Additional population to create new 

population for IDE 

newP    New population for IDE  

raX , rbX  and rcX   Random individuals for 

mutation 

F   Scaling factor for mutation 

rC   Crossover constant  

)(xf   Fitness function 

 

3. Economic Load Dispatch Problem 

 

The principal objective of the economic load 

dispatch problem is to find a set of active power 

delivered by the committed generators to satisfy the 

required demand subject to the unit technical limits at 

the lowest production cost. The optimization of the 

ELD problem is formulated in terms of the fuel cost 

expressed as,  
n

i

GiiGiii

n

i

GiiT PcPbaPFF
1

2

1

)(

 
               [1]    

Subject to the equality constraint,  
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LD

N

i

Gi PPP
1

               [2] 

Subject to the inequality constraint,  

maxmin GiGiGi PPP      [3] 

 

4. Proposed Methodology 
 

The basic function of the SDE algorithm and 

the concept of the Opposition based learning are 

described in this section. Followed by the brief 

introduction to the concepts, the implementation of 

IDE and its application to ELD problem is explained in 

detail.  

 

A. Standard Differential Evolution 
 

The SDE algorithm is a stochastic population 

based algorithm similar to Genetic Algorithms (GA) 

using the operators; crossover, mutation and selection. 

The key dissimilarity between GA and SDE is that 

GAs rely mostly on crossover while SDE relies on 

mutation operation. The algorithm uses mutation 

operation as a search mechanism and selection 

operation to direct the search toward the prospective 

regions in the search space [34]. Mutation in SDE uses 

differences of randomly sampled pairs of solutions in 

the population and greediness may be embedded in it. 

The SDE algorithm also uses a non-uniform crossover 

that can take child vector parameters from one parent 

more often than it does from others. By using the 

components of the existing population members to 

construct trial vectors, the recombination (crossover) 

operator efficiently shuffles information about 

successful combinations, enabling the search for a 

better solution space. An optimization problem 

consisting of N parameters can be represented by an N-

dimensional vector. In SDE, a population of Np 

solution vectors is randomly created at the initialization 

stage. This population is successfully improved by 

applying mutation, crossover and selection operators 

thus evaluating the objective function or the fitness 

function. A brief description of different steps of SDE 

is given below.  

Initialization - An initial population of candidate 

solutions is formed by assigning random values to each 

decision parameter of every individual in the 

population, dimension of each vector being N, 

according to the rule, 

DjandNi

XXrandXX

P

jjjji

,,2,1,,2,1

,]1,0[ minmaxmin)0(

,


 [4] 

Mutation – Three distinct individuals are chosen in 

random from the population such that 

ircrbra and mutation is performed 

according to  

P

G

rc

G

rb

G

ra

G

i NiXXFXV ,2,1,1
 [5] 

where 
G

raX  can be any random individual among the 

selected three and F is the scaling factor.  

Crossover – The current population member 
G

jiX ,  
and 

the mutated member 
1

,

G

jiV are subject to crossover, to 

generate a set of trial vectors as follows:  

 

  [6]

  

 

Selection – Compute the fitness function value of the 

new individual and select the best individual for the 

next generation.  

 

B. Opposition Based Learning 
 

In general, heuristic optimization methods 

start with few initial solutions in a population and try to 

improve them towards optimal solutions during 

generations. The optimization process terminates when 

some predefined criteria are satisfied. Without any a 

priori information about the solutions to the problem 

under consideration, the optimization starts with a set 

of random presumptions. The chance of obtaining a 

fitter solution can be attained through the opposite 

solution. By monitoring the opposite solution, the fitter 

presumed solution can be chosen as an initial solution. 

In fact, according to probability theory, 50% of the 

time a presumption is further from the solution than its 

opposite presumption. Therefore, based on the fitness, 

two close presumption has the potential to accelerate 

convergence. This approach is not only applied to 

initial solutions but also continuously to each solution 

in the current population.  

Consider a point ),,,( 21 nxxxP  , with 

D-dimensional space consisting of candidate solutions. 

Let (.)f  be the fitness function used to measure the 

fitness of the candidate solutions. If 

Diqpx iii ,...,2,1],[ represents a real 

number, then the opposite points of ix (denoted as ix


) 

is defined as  

iiii xqpx


  [7] 

Based on Eqn 

[7], ),,,( 21 nxxxP





represents the opposite of 

),,,( 21 nxxxP  . If )()( PfPf


, then P  can 

be replaced with P


, otherwise the optimization 

procedure continues with P . Thus the point and its 

opposite point are evaluated simultaneously in order to 

continue the generations with the fitter individuals.  

 

C. Proposed IDE for ELD 
 

Though SDE has emerged as one of the most 

popular technique for solving optimization problem, it 

has been observed that the convergence rate of SDE 

does not meet the expectations in case of multi-

otherwiseX

CrandifV
U

G

ji

r

G

jiG

ji
,

]1,0[,

,

1

,1

,
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objective problems. Hence certain modifications using 

the concept of opposition based learning, and random 

localization are performed on the SDE. The proposed 

IDE varies from the basic SDE in terms of the 

following factors: 

- IDE uses the concept of opposition based learning in 

the initialization phase while SDE uses the uniform 

random numbers for initialization of population 

- During mutation, IDE chooses the best individual 

among the three points as the mutant individual 

whereas in SDE, a random choice is made with equal 

choice of any of the three being selected.  

- SDE uses two sets of population – current population 

and an advanced population for next generation 

individuals. IDE uses only one population set and the 

same population is updated as the best individuals are 

found.  

 

The steps of the proposed algorithm are 

explained below:     

Initialization: The basic step in the IDE optimization is 

to create an initial population of candidate solutions by 

assigning random values to each decision parameter of 

each individual of the population. A population P  

consisting of NP individuals is constructed in a random 

manner such that the values lie within the feasible 

bounds 
min

jX and 
max

jX of the decision variable, 

according to the following rule, 

DjandNi

XXrandXX

P

jjjji

,,2,1,,2,1

,]1,0[ minmaxmin)0(

,


 [8] 

where ]1,0[rand  represents a uniform random 

number in the interval [0,1], 
min

jX and 
max

jX are the 

lower and upper bounds for the j
th

 component 

respectively, D is the number of decision variables. 

Each individual member of the population consists of 

an N-dimensional vector 

},,,{ 21

)0(

Ni PPPX  where the i
th

 element of 

)0(

iX  represents the power output of the i
th

 generating 

unit. 

 An additional population addP  is constructed 

using the rule,      

jijjji PXXY ,

maxmin)0(

, ,             [9] 

where jiP , denotes the points of population P . The 

new population newP  for the proposed approach is 

formed by combining the best individuals of both 

populations P  and addP  as follows 

)0(

,

)0(

, jijinew YXP                [10] 

Mutation: Next generation offspring are introduced 

into the population through the mutation process. 

Mutation is performed by choosing three individuals 

from the population newP  in a random manner. 

Let raX , rbX  and rcX  represent three random 

individuals such that ircrbra , upon which 

mutation is performed during the G
th

 generation as,      

P

G

rc

G

rb

G

best

G

i NiXXFXV ,2,1,1
[11

] 

where 
1G

iV is the perturbed mutated individual and 

G

bestX represents the best individual among three 

random individuals. The difference of the remaining 

two individuals is scaled by a factor F, which controls 

the amplification of the difference between two 

individuals so as to avoid search stagnation and to 

improve convergence.  

Crossover: New offspring members are reproduced 

through the crossover operation based on binomial 

distribution. The members of the current population 

(target vector) 
G

jiX ,  and the members of the mutated 

individual 
1

,

G

jiV are subject to crossover operation thus 

producing a trial vector 
1

,

G

jiU  according to, 

otherwiseX

CrandifV
U

G

ji

r

G

jiG

ji
,

]1,0[,

,

1

,1

,    [12] 

where rC is the crossover constant that 

controls the diversity of the population and prevents 

the algorithm from getting trapped into the local 

optima. The crossover constant must be in the range of 

[0 1]. 1rC implies the trial vector will be composed 

entirely of the mutant vector members and 0rC  

implies that the trial vector individuals are composed 

of the members of parent vector. Equation [12] can 

also be written as  

r

1G

ji,r

G

ji,

1G

ji, CV + )C -(1 X= U
 

[13] 

Selection: Selection procedure is performed with the 

trial vector and the target vector to choose the best set 

of individuals for the next generation. In this proposed 

approach, only one population set is maintained and 

hence the best individuals replace the target individuals 

in the current population. The objective values of the 

trial vector and the target vector are evaluated and 

compared. For minimization problems like ELD, if the 

trial vector has better value, the target vector is 

replaced with the trial vector as per, 

P

G

i

G

i

G

i

G

iG

i

Nifor

otherwiseX

XfUfifU
X

,,2,1

;
,

)()(, 11



  [14] 

Fitness evaluation: The objective function for the ELD 

problem based on the fuel cost and power balance 

constraints is framed as 
N

i

LD

N

i

ii PPPikPFxf
11

)()( , [15] 
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where k is the penalty factor associated with the power 

balance constraint, )( ii PF is the i
th

 generator cost 

function for output power Pi, N is the number of 

generating units, DP is the total active power demand 

and LP represents the transmission losses.  For ELD 

problems without transmission losses, setting k=0 is 

most rational, while for ELD including transmission 

losses, the value of k was set to 1.   

 

The pseudocode of the proposed approach is shown 

below: 

Generate an initial population P randomly with each 

individual representing the power output of the ith 

generating unit according to Eqn [8].  

Generate an additional population addP  according to 

Eqn [9] 

Obtain the new population newP as per Eqn 103] 

Evaluate fitness for each individual in newP based on 

Eqn [15] 

While termination criteria not satisfied 

 For i = 1 to NP 

Mutate random members in newP  to obtain 

1G

iV   

 Perform crossover on 
G

iX and 
1

,

G

jiU  

 Evaluate fitness function of 
G

iX and 
1G

iU  

 If )()( 1 G

i

G

i XfUf  

Replace existing population with 
1G

iU  

 End if 

 End for 

End While 

 

5. Experimental Results and Analysis 
 

The efficiency of the proposed algorithm for 

solving Economic Load Dispatch (ELD) problem has 

been tested on two different power generating units – 

the 6 unit and the 20 unit system including the 

transmission losses. The performances of these 

algorithms are evaluated and compared with classical 

Lambda Iteration Method (LIM) and other meta-

heuristics available in literature. The algorithms are 

implemented in MATLAB R2008b platform on i3 

processor, 2.53 GHz, 4 GB RAM personal computer. 

 

A. Test System I – IEEE 30 Bus System 
 

The IEEE 30 bus six unit test system has been 

adopted from [38], in which the fuel cost coefficients, 

and power limits are known. The specifications of the 

system for six generator test system are detailed in 

Table I. The system is found to have minimum and 

maximum generation capacity of 117 MW and 435 

MW, respectively. The transmission loss coefficient 

denoted as Bij is given according to Equ. 15 as, 

000358.0000000.0000050.0000107.000030.0000027.0

000000.0000243.0000094.0000153.000002.0000002.0

000050.0000094.0000221.0000131.000015.000140.

000107.000153.000131.000417.0000004.0000009.0

000030.0000002.0000015.000004.0000181.0000103.0

000027.0000002.0000010.000009.0000103.0000218.0

ijB

 

The generalized IDE parameters and their 

settings for the ELD problem are listed in Table II. For 

optimal parameters, simulations were carried out for 50 

trials each time varying the basic parameters like scale 

factor (F), Crossover rate (Cr) and population size (P). 

The effect of these parameters on the IEEE 30 bus 

system for a demand of 283.4 MW is shown below.  

 

Effect of population size 

 The population size is related with the 

problem dimension and complexity. The population 

size was varied between [20,100] and the results are 

shown in Table III. Experiments were repeated for 50 

trials for each population size and it was found that a 

size of 80 was more consistent in obtaining the global 

optimal solution. The corresponding standard deviation 

was also computed and it was found very low for the 

population size of 80 which implies that most of the 

best solutions are very close to the optimal value.  

 

Effect of F and Cr 

The parameter F controls the speed and 

robustness of the search, i.e., a lower value of F 

increases the convergence rate but also increases the 

risk of getting stuck into a local optimum. On the other 

hand, if F > 1.0 then solutions tend to be more time 

consuming and less reliable. The parameter Cr which 

controls the crossover operation can also be thought of 

as a mutation rate, i.e., the probability that a variable 

will be inherited from the mutated individual. The role 

of Cr is to provide a means of exploiting 

decomposability.  

In this paper, an extensive study was carried 

out for selecting the most suitable IDE parameter set 

for the chosen problem. In order to select the most 

suitable {F, Cr} pair, P was fixed to 80, with a load 

demand of 283.4 MW, and experimented by varying 

F [0,1] and Cr [0.1,1] with a step size of 0.2 and 0.1 

for F and Cr respectively. To assure convergence 

maximum generations (MAXGEN=500) was allowed 

in every experimental run. The results of the influence 

of Cr and F are shown in Table IV. The results suggest 

that for most of the Cr and F settings, DE is capable of 

exhibiting better performance. However, the best 

settings are F=0.8 and Cr=0.8 corresponding to the 

minimum cost of 794.9129 $/hr.  

 

Simulation Results of Test System I 

With the best values of P = 80, F = 0.8 and Cr 

= 0.8 obtained from Tables III, and IV, the IDE 

algorithm was run for different values of demand 

ranging between 117 MW and 435 MW. For each 

demand, 50 independent trials with 500 iterations per 
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trial have been performed. The individual generator 

powers, minimum fuel cost, total power generated, 

power loss and the computational time required to 

obtain the simulation results are shown in Table V. 

 

Comparative Analysis 

The results of the proposed IDE for IEEE 30 

bus system are compared with other reported 

approaches such as HGA [39], EP [40], FGA [38], PS 

[41], GA [42], GA-PS [41], ACO [43], DE [47], 

SADE_ALM [46], WIPSO [44], and ABC [45]. The 

economic dispatch obtained through the LI method was 

also used for comparison and all the results are shown 

in Table VI. The minimum cost for the demand of 

283.4 MW reported so far in the literature was 

799.1665 $/hr [44], compared to all others, while the 

proposed IDE produced a cost of 794.9129 $/hr, 

promisingly optimal and consistent. The power loss 

during the optimal dispatch was 9.30433 MW 

relatively less than all other meta-heuristic algorithms.  

 

B. Test System II – 20 Unit System 
 

In order to demonstrate the effectiveness of 

the IDE algorithm, the ELD benchmark consisting of 

twenty generator units [12] is selected. The details of 

fuel cost coefficients and generating limits for each 

unit are given in Table VII. The maximum and 

minimum power generating limits of the system are 

3865 MW and 1010 MW, respectively.  

The Transmission Loss Coefficient Matrix for 

calculating power loss of 20 Unit test system can be 

obtained from [12]. The various IDE parameters used 

to implement ELD problem for 20 unit generating 

system is similar to that of the six unit test system 

except for the dimension which is varied based on the 

size of the problem. Here D=19 for 20 unit system and 

the population is usually set based on 10 times the D 

value. Notations of the parameters and the range of 

values are given in the Table II. 

 

Effect of population size 

To determine the best choice of population 

size for the twenty unit system with a demand of 2500 

MW, the IDE algorithm was run with different values 

for 30 independent trials. The minimum, maximum and 

the mean cost were determined along with the standard 

deviation and simulation time. The results are shown in 

Table VIII and the best value of population size was 40 

resulting in minimum mean cost during 28 hits out of 

30 trials.  

 

Effect of F and Cr 

For a population size of 40, the crossover 

probability Cr is increased from 0.1 to 0.9 in steps of 

0.1. (Table 7.19). The scale factor is increased from 0 

to 1 in steps of 0.2 and the results are tabulated in 

Table IX. The best values of Cr and F were found to be 

0.6 and 0.8 respectively at a minimum generation cost 

518276.4353 $/hr.  

 

Simulation Results for Test System II 

The power demands are varied between 

[1010,3865] for the 20-unit system. For each value of 

PD, 30 trials are performed with 500 iterations per trial. 

The best values of power generated in each unit, fuel 

cost, power loss, total power and computational time 

are computed as shown in Table X.    

 

Comparative Analysis 

The optimal dispatch of the test case II was 

computed through the lambda iteration method. The 

results of the proposed method for 20 unit system are 

compared against the results obtained in reported 

heuristic methods like SHN [12], BBO [1], PSO [28], 

IWD [8] and the classical LIM [12]. For a demand of 

2500 MW, the fuel cost computed through the 

proposed IDE is 518276.4 $/hr, comparatively much 

lesser than other reported heuristic algorithms as shown 

in Table XI.      

 

C. Summary of Discussions 
 

The results obtained for the 6 unit and the 20 

unit systems have proved that IDE is efficient in 

producing the optimal dispatch when compared with 

several heuristic methods due to the concept of 

opposition based learning in the initialization phase. 

The consequences of the output based on the solution 

quality, generation costs, robustness and efficiency are 

summarized in this section.  

 

Solution quality - Solution quality is justified based on 

the key optimizing parameter for ELD problems, the 

total operating cost. The results obtained for both the 

test systems have showed that the proposed IDE 

method is suitable for producing the best compromise 

solution in terms of fuel cost. Table VI shows that the 

best competent solutions in terms of fuel cost and 

power loss for IEEE 30 bus system are obtained by the 

IDE when compared with the classical DE [47] and 

other algorithms. Similarly, Table XI also emphasizes 

that IDE is more suitable for larger unit power systems 

generating minimum operational cost. The 

characteristic features of the IDE like simple, compact 

structure, and high convergence nature has motivated 

the algorithm in attaining quality solutions for the ELD 

problems.  

 

Testing of robustness - The performance of any 

heuristic search based optimization algorithm is best 

judged through repetitive runs in order to compare the 

robustness and consistency of the algorithm. For this 

specific goal, the frequency of convergence to the 

minimum cost at different ranges of generation cost 

with fixed load demand is to be recorded. Experimental 

results show that the frequency of convergence, for a 6 

unit system, using IDE, towards the optimal fuel cost 

was 49 out of 50 trial runs for all power demands. 

Similarly, for the 20 unit system, 30 trials were 

repeated and it was observed that the convergence rate 

of DE towards the optimal cost was 28 out of 30.  
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Computational efficiency - Apart from yielding the 

optimal solution, it may also be noted that IDE yields 

the minimum cost at a comparatively lesser time of 

execution. It may be observed from Table VI and XI, 

that the average computational time of IDE in test 

systems I and II is much less than the compared 

heuristics optimization techniques. Hence the proposed 

IDE is computationally more efficient in terms of 

speed of convergence. 

 

6. Conclusion 
   

The IDE algorithm had been implemented to 

solve the ELD problems. The main motivation of the 

current work is to use the notion of opposition to 

accelerate the SDE. During mutation, IDE chooses the 

best individual among the three points as the mutant 

individual and uses only one population set and the 

same population is updated as the best individuals are 

found. It has been observed from the results of test 

systems I and II, that IDE is capable in achieving 

optimal quality solutions with speedy convergence 

characteristics. With high dimension problems such as 

test case II, the solution quality, and computational 

efficiency of IDE outperforms other method. It is clear 

from the results obtained through several trials, that the 

implementation of IDE overcomes the effect of 

premature convergence, exhibited by other heuristic 

optimization techniques. The idea of proposing the IDE 

is to introduce a new version of opposition 

optimization through meta-heuristic algorithms like 

SDE. Possible directions for future work include 

proposing OBL concepts into mutation in SDE and 

other heuristics like GA, PSO and ACO.  

 

 

Table I Fuel cost coefficients and power limits for six unit test system 

Unit no. ai 

($/hr) 

bi 

($/MW hr) 

ci 

($/MW
2 
hr) 

PGimax 

(MW) 

PGimin 

(MW) 

1 .00375 2 0 50 200 

2 .01750 1.75 0 20 80 

3 .06250 1 0 15 50 

4 .00834 3.25 0 10 35 

5 .02500 3 0 10 30 

6 .02500 3 0 12 40 

 

Table II Parameters of DE used to implement ELD for six unit system 

Parameters of DE Notations used Values 

No. of members in population NP [20,100] 

Vector of lower bounds for initial population min

jX  [-2,-2] 

Vector of upper bounds for initial population max

jX  [2,2] 

Number of iterations Iter 200 

Dimension  D 5 

Crossover Rate Cr [0,1] 

Step size F [1,2] 

Strategy parameter DE/best/2/bin 9 

Refresh parameter R 10 

Value to Reach VTR 1.e-6 

 

Table III Effect of population size on IEEE 30 bus system 

Population 

size 

Min 

Cost 

($/hr) 

Max 

cost 

($/hr) 

Mean 

cost 

($/hr) 

SD 
CPU 

Time (s) 

No. of 

hits for 

min cost 

20 794.9129 794.9212 794.9188 0.03929 1.326 43 

40 794.9129 794.9758 794.9144 0.009042 2.6988 44 

60 794.9129 794.9668 794.914 0.007702 3.8064 46 

80 794.9129 794.9273 794.9133 0.002294 4.992 49 

100 794.9129 794.9385 794.9134 0.003668 5.9592 47 
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Table IV Influence of F and Cr 

Cr 
F 

0 0.2 0.4 0.6 0.8 1 

0.1 795.733 794.9767 794.9728 794.9675 794.9773 794.91309 

0.2 795.84346 794.9654 794.9662 794.9189 794.9514 794.913626 

0.3 781.54936 794. 9628 794.9735 794.9598 794.9228 794.912854 

0.4 796.2055 794. 9422 794.9577 794.9308 794.7974 794.912863 

0.5 796.41323 794.9138 794.9423 794.9907 794.9458 794.912904 

0.6 800.1263 794.9251 794.9385 794.9522 794.9328 794.912858 

0.7 802.30951 795.1291 794.9601 794.9582 794.9185 794.91326 

0.8 796.58186 795.4591 794.9809 794.9254 794.9129 794.913771 

0.9 803.46569 797.4425 794.9190 794.9391 794.9131 794.91919 

1 813.48962 802.1391 794.9337 794.9859 794.9138 794.916266 

 

Table V Results using IDE for IEEE 30 bus system  

PD(MW) 117 150 200 250 283.4 300 350 400 435 

PG1 (MW) 50 75.96083 116.3169 155.6807 181.6329 200 200 200 200 

PG2 (MW) 20.09735 27.23823 35.96627 44.4934 50.12272 46.33002 78.99963 80 80 

PG3 (MW) 15 15 16.14298 18.56025 20.15867 20.26121 24.39775 21.89781 50 

PG4 (MW) 10 10 10 10 10 12.44659 10.00169 29.49016 35 

PG5 (MW) 10 10 10 10 10.46971 10.06413 25.93428 30 30 

PG6 (MW) 12 12 12 12 12 12 12 40 40 

Fuel cost ($/ MW hr) 292.6102 378.5813 521.9338 680.5186 794.9129 828.6273 1027.465 1229.463 2805.379 

Total PG (MW) 117.0974 150.1991 200.4261 250.7343 284.384 301.102 351.3334 401.388 435 

PL (MW) 0.090852 0.189186 0.41102 0.714077 0.960433 1.101951 1.332519 1.387965 1.400663 

CPU Time (s) 1.54441 1.57561 1.51321 1.669211 1.466409 1.825212 1.638011 1.57561 1.56001 

 

Table VI Comparison of results for IEEE 30 bus system 

Heuristic 

Algorithms 

Output Power (MW) Fuel 

cost 

($/hr) 

Total 

power 

PG 

(MW) 

Power 

loss 

(MW) 

CPU 

time (s) 
PG1 PG2 PG3  PG4  PG5  PG6  

IDE 181.6329 50.12272 20.15867 10 10.46971 12 794.9129 284.384 9.30433 1.466409 

LIM 174.3403 56.89421 29.66026 10 10 12 808.9491 292.8948 9.48889 25.9063 

HGA 176.2358 49.0093 21.5023 21.8115 12.3387 12.0129 802.465 292.9105 9.5105 NA 

EP 176.1522 48.8391 21.5144 22.1299 12.2435 12 802.404 292.8791 9.4791 NA 

FGA 189.613 47.745 19.5761 13.8752 10 12 799.823 292.8093 9.6897 0.125 

PS 175.727 48.6812 21.4282 22.8313 12.0667 12 802.015 292.7344 9.3349 NA 

GA 179.367 44.24 24.61 19.9 10.71 14.09 803.699 292.917 9.5177 315 

GA-PS 175.6627 48.6413 21.4222 22.6219 12.3806 12 802.0138 292.7287 9.3286 NA 

ACO 177.863 43.8366 20.893 23.1231 14.0255 13.1199 803.123 292.8611 9.4616 20 

DE 177.3 49.18 12.24 11.19 21.23 21.74 802.23 292.88 NA NA 

SADE_ALM 176.1522 48.8391 21.5144 22.1299 12.2435 12 802.404 292.8791 9.4791 NA 

WIPSO 177.1567 48.6905 21.3013 20.9714 11.9314 12.0078 799.1665 292.0591 8.66 15.453 

ABC 176.88 49.54 21.69 2l.71 10.92 12.15 801.881 271.18 NA 8.94 

*NA – Not available 
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Table VII Fuel cost coefficients and power limits for twenty unit test system 

Unit  

no. 

ai 

($/hr) 

bi 

($/MW hr) 

ci 

($/MW
2 
hr) 

PGimax 

(MW) 

PGimin 

(MW) 

1 0.00068 18.19 1000 600 150 

2 0.00071 19.26 970 200 50 

3 0.00650 19.80 600 200 50 

4 0.00500 19.10 700 200 50 

5 0.00738 18.10 420 160 50 

6 0.00612 19.26 360 100 20 

7 0.0079 17.14 490 125 25 

8 0.00813 18.92 660 150 50 

9 0.00522 18.27 765 200 50 

10 0.00573 18.92 770 150 30 

11 0.00480 16.69 800 300 100 

12 0.00310 16.76 970 500 150 

13 0.00850 17.36 900 160 40 

14 0.00511 18.70 700 130 20 

15 0.00398 18.70 450 185 25 

16 0.00712 14.26 370 80 20 

17 0.0089 19.14 480 85 30 

18 0.00713 18.92 680 120 30 

19 0.00622 18.47 700 120 40 

20 0.00773 19.79 850 100 30 

 

Table VIII Effect of population size on 20 unit system 

Population 

size 

Min Cost 

($/hr) 

Max cost 

($/hr) 

Mean 

cost 

($/hr) 

SD 
CPU 

Time (s) 

No. of 

hits for 

min cost 

20 518276.4 549391.4 519245.5 4695.932 1.6068 22 

40 518276.4 521859.2 518369.1 517.3652 3.12 28 

60 518276.4 539991.1 518815 3104.772 4.5708 24 

80 518276.4 537961.5 518843.8 2857.256 5.8344 26 

100 518276.4 521805 518376.6 519.0833 7.0512 27 

 

Table IX Influence of F and Cr on Fuel cost  

Cr 
F 

0 0.2 0.4 0.6 0.8 1 

0.1 577970.6004 518276.453 518276.5673 518277.5870 518276.4668 518276.5902 

0.2 630381.2086 518277.1892 518276.5567 518276.5673 518276.4556 518276.4527 

0.3 659122.3723 580981.5683 518276.5378 518276.5433 518276.4553 518276.4658 

0.4 652899.8416 562270.4641 518276.5189 518276.4980 518276.4521 518495.8300 

0.5 650428.2807 577368.9461 518276.4890 518647.0872 518276.4478 518890.2527 

0.6 659347.8982 626230.2365 518411.8924 518276.4753 518276.4353 518276.4736 

0.7 745288.9464 703185.9761 526067.2981 518276.4389 518276.4390 518647.0872 

0.8 773636.0369 737310.0134 583023.8938 518890.2527 518276.4412 518647.0874 

0.9 785706.711 732704.1988 678034.9648 518647.0872 518276.4418 518925.9563 

1 851667.4802 800142.605 651293.8501 562128.0087 518276.4365 522158.4855 
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Table X Results using DE for twenty generator test system 

Power Demand 

(MW) 

1010 1500 2000 2500 3000 3500 3865 

PG1 (MW) 150.0005 261.5139 439.0248 600 600 600 600 

PG2 (MW) 50 50 198.9982 200 200 200 200 

PG3 (MW) 117.8433 200 200 200 200 200 200 

PG4 (MW) 50 84.40388 200 200 200 200 200 

PG5 (MW) 50 50 160 160 160 160 160 

PG6 (MW) 20 47.36409 100 100 100 100 100 

PG7 (MW) 25 25 25 83.94886 83.94887 83.94885 83.94887 

PG8 (MW) 50 150 150 150 150 150 150 

PG9 (MW) 50 50 200 200 200 200 200 

PG10 (MW) 126.7899 150 150 150 150 150 150 

PG11 (MW) 100 100 100 100 100 100 100 

PG12 (MW) 150 150 150 150 150 150 150 

PG13 (MW) 40 40 55.85962 132.3652 132.3652 132.3652 132.3652 

PG14 (MW) 20 20 20 20 20 20 20 

PG15 (MW) 25 25 104.6126 185 185 185 185 

PG16 (MW) 20 62.68257 80 80 80 80 80 

PG17 (MW) 30 46.44614 85 85 85 85 85 

PG18 (MW) 30 120 120 120 120 120 120 

PG19 (MW) 40 40 120 120 120 120 120 

PG20 (MW) 30 100 100 100 100 100 100 

Fuel cost 

($/hr) 

35511.5 47331.11 66494.72 518276.4 1018276 1518276 1883276 

Total power 1026.065 1541.207 2065.542 2592.214 3124.486 3683.671 3865 

Power loss 

(MW) 

16.0651 41.20678 65.54228 92.21373 124.4856 183.6713 214.3426 

CPU Time (s) 1.62241 1.856412 1.747211 1.981213 1.981213 2.012413 1.918812 

 

 

Table XI Comparative Analysis for 20 unit test system 

Parameters IDE LIM CLIM SHN BBO PSO IWD 

PG1 (MW) 600 470.6366 512.7805 512.7804 513.09 563.3155 563.32 

PG2 (MW) 200 50 169.1033 169.1035 173.35 106.5639 106.56 

PG3 (MW) 200 151.1845 126.8898 126.8897 126.92 98.7093 98.71 

PG4 (MW) 200 97.11856 102.8657 102.8656 103.33 117.3171 117.32 

PG5 (MW) 160 97.77008 113.6836 113.6836 113.77 67.0781 67.08 

PG6 (MW) 100 55.68459 73.5710 73.5709 73.07 51.4702 51.47 

PG7 (MW) 83.94886 125 115.2878 115.2876 114.98 47.7261 47.73 

PG8 (MW) 150 150 116.3994 116.3994 116.42 82.4271 82.43 

PG9 (MW) 200 68.82129 100.4062 100.4067 100.69 52.0884 52.09 

PG10 (MW) 150 150 106.0267 106.0267 100 106.5097 106.51 

PG11 (MW) 100 194.5108 150.2394 150.2395 148.98 197.9428 197.94 

PG12 (MW) 150 337.2191 292.7648 292.7647 294.02 488.3315 488.33 

PG13 (MW) 132.3652 151.1625 119.1154 119.1155 119.58 99.9464 99.95 

PG14 (MW) 20 20 30.8340 30.8342 30.55 79.8941 79.89 

PG15 (MW) 185 103.9979 115.8057 115.8056 116.45 101.525 101.53 

PG16 (MW) 80 80 36.2545 36.2545 36.23 25.8380 25.84 
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PG17 (MW) 85 51.67328 66.8590 66.8590 66.86 70.0153 70.02 

PG18 (MW) 120 98.43284 87.9720 87.9720 88.55 53.9530 53.95 

PG19 (MW) 120 98.48716 100.8033 100.8033 100.98 65.4271 65.43 

PG20 (MW) 100 42.17147 54.3050 54.3050 54.27 36.2552 36.26 

Fuel cost ($/hr) 518276.4 63295.81 62456.6391 62456.6341 62456.79 59804.05 59799 

Total power PG (MW) 2592.214 2593.871 2537.662 2591.967 2592.11 2512.3343 2512.34 

Power loss (MW) 92.21373 93.83006 91.9670 91.967 92.11 92.3343 92.33 

CPU time (s) 1.981213 1232.1 33.757 6.355 6.93  3.9 
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