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Abstract: In this paper, a practical method is presented to design broadband matching networks via reflection 

coefficient modeling. In the proposed algorithm, reflection function values ( 2 ) at sample frequencies are 

optimized to get the desired gain level. At the same time, the corresponding reflection coefficient values ( 2S ) are 

calculated and modeled. Then matching network topology and element values are obtained via the formed 

reflection coefficient expression. An example is presented to explain the usage of the new method. 
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1. Introduction 
 

Matching a generator to a complex load 

impedance is to design a lossless two-port network 
to maximize the power transfer from the generator 

to the load over an interested frequency band. The 

matching performance of the system is best 

measured by means of the transducer power gain 

( TPG ) which is the ratio of power delivered to the 

load to the available power from the generator (Fig. 
1). 

 

 

 

 

 

 

 

 
Figure 1. Double matching arrangement 

 

In a matching problem, if the generator 

impedance is purely resistive and the load 

impedance is complex, then it is a single matching 
problem. But if both the generator and load 

impedances are complex, then the problem is a 

double matching problem. 

In literature, there are lots of techniques to 

design broadband matching networks. But they can 

be grouped basically as the methods based on TPG  

optimization and the methods based on modeling. 

In the first group, the selected free parameters are 

optimized until reaching an acceptable gain level [1-7]. 

In the second group, firstly the values of any selected 

function are calculated usually via TPG  optimization, 

and then a model is formed for the obtained data [8, 9]. 

But the problem of the methods in the second 

group is to obtain a realizable data set. Otherwise, the 

data set cannot be modeled. In the proposed method, 

both TPG  optimization and modeling are realized at the 

same time, not sequentially. So it is guaranteed to obtain 

a realizable data set. In the next section, the rationale of 

the proposed method is described. 

 

2. Rationala of the proposed method 
 

Consider the double matching arrangement 

shown in Fig. 1. Input reflection function ( 1 ) can be 

defined as 
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where 1Z  is the input impedance seen at port 1 when 

port 2 is terminated in the load ( LZ ), GZ  is the 

generator impedance and the upper asterisk denotes 

complex conjugation. 
In a similar manner, the reflection function 

( 2 ) at port 2 can be defined as 
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where 2Z  is the output impedance seen at port 2 

when port 1 is terminated in GZ . 

Since the two-port is lossless, on the 

imaginary axis of the complex frequency plane, it 

can be written that 
2
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The transducer power gain at real 

frequencies can be defined as 
2
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Now let us define the reflection 

coefficients GS  and 1S  at port 1 as 
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Substituting the relationships from (5) in 

(1) yields the reflection coefficient at port 1 as a 

function of GS  and 1  as follows 
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In a similar manner, let us define the 

reflection coefficients LS  and 2S  at port 2 as 
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Substituting the relationships from (7) in 

(2) yields the reflection coefficient at port 2 as a 

function of LS  and 2  as follows 
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1S  and 2S  can be expressed in terms of the 

scattering parameters ( ijS  , 2,1, ji ) of the two-

port, the reflection coefficient of the load and that 
of the generator as 
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Here the scattering parameters of the 

lossless matching network can be written in terms 

of three real polynomials by using the well known 

Belevitch representation as follows [7] 
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where  jp   is the classical complex 

frequency variable, h  is a polynomial with real 

coefficients, g  is a strictly Hurwitz polynomial, f  

is a real monic polynomial and   is a unimodular 

constant ( 1 ). If the two-port is reciprocal, then the 

polynomial f  is either even or odd and 

)(/)( pfpf  . 

The polynomials f , g, h  are related by the 

Feldtkeller equation [2] 

)()()()()()( pfpfphphpgpg  .         (12) 

It is clear from (12) that the Hurwitz 

polynomial )( pg  is a function of )( pf  and )( ph . If the 

polynomials )( pf  and )( ph  are specified, then the 

scattering parameters of the two-port network, and then 

the network itself can be completely defined. 

In almost all practical applications, the 
designer has an idea about the transmission zero 

locations of the matching network. Hence the 

polynomial )( pf  which is constructed on the 

transmission zeros is usually defined by the designer. 

For practical problems, the designer may use the 

following form of )( pf  
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where 1m  and 2m  are nonnegative integers and ia ’s are 

arbitrary real coefficients. This form corresponds to 

ladder type minimum phase structures, whose 

transmission zeros are on the imaginary axis of the 

complex p -plane. 

So if the values of 2  are initialized, they are 

optimized until reaching the desired TPG  via (4). Also 

at each iteration, 2S  values are calculated via (8) and 

modeled simultaneously via (10) in terms of three real 

polynomials h , g  and f . The crux of the method is to 

model the calculated 2S  data as 2  values are 

optimized. A similar approach can be defined in terms 

of 1  and 1S . 

As the result, the following algorithm can be 

proposed to solve both single and double broadband 

matching problems with lumped elements. But the same 

algorithm can easily be adapted to design distributed or 
mixed element broadband matching networks. 

 

3. Proposed Algorithm 
 

Inputs: 

• )()()( measuredLmeasuredLmeasuredL jXRZ  ,

)()()( measuredGmeasuredGmeasuredG jXRZ  : Measured 

load and generator impedance data, respectively. 

• )(measuredi : Measurement frequencies, 

)()( 2 measuredimeasuredi f  . 

• fT  : Desired flat TPG  level. 

• normf : Normalization frequency. 

• normR : Impedance normalization number in ohms. 
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• 222  j : Initial values of the reflection 

function at port 2 at all sample frequencies. 

• nhhhh ,,,, 210  : Initial real coefficients of the 

polynomial )( ph . Here n  is the degree of the 

polynomial which is equal to the number of lossles 

lumped elements in the matching network. The 

coefficients can be initialized as ±1 in an ad hoc 

manner or the approach explained in [10] can be 

followed. 

• )( pf : A polynomial constructed on the 

transmission zeros of the matching network. A 

practical form is given in (13). 

• c : The stopping criteria of the sum of the square 

errors. 

Outputs: 

• Analytic form of the input reflection coefficient of 

the lossless matching network, )(/)()(11 pgphpS  . 

• Circuit topology of the lossless matching network 

with element values: The circuit topology and 

element values are obtained as the result of the 

synthesis of )(11 pS . Synthesis is carried out in 

Darlington sense. That is, )(11 pS  is synthesized as 

a lossless two-port which is the desired matching 

network [11]. Also the synthesis process can be 

carried out by using impedance based Foster or 

Cauer methods via ))(1/())(1()( 111111 pSpSpZ   

as explained in [12]. 

Computational Steps: 

Step 1: Normalize the measurement frequencies 

with respect to normf  and set all the normalized 

angular frequencies normmeasuredii ff /)( . 

Normalize the measured load and generator 
impedances with respect to impedance 

normalization number normR ; 

normmeasuredLL RRR /)( , normmeasuredLL RXX /)( , 

normmeasuredGG RRR /)( , normmeasuredGG RXX /)(  

over the entire frequency band. 

Step 2: Obtain the strictly Hurwitz polynomial 

)( pg  from (12). Then calculate scattering 

parameters via (11). 

Step 3: Calculate the values of the output reflection 

coefficient via (8) and (10) as )8(
2S  and )10(

2S  , 

respectively.. 

Step 4: Calculate the errors via 
2)10(

2
)8(

21 ))Re()(Re()( SS  , 

2)10(
2

)8(
22 ))Im()(Im()( SS   and 

22
23 )1()(   fT , then 321   , 

where )Re(  and )Im(  means the real and 

imaginary part of )( , respectively. 

Step 5: If   is acceptable ( c  ), stop the 

algorithm and synthesize )(11 pS . Otherwise, 

change the initialized values of 2  and the coefficients 

of the polynomial )( ph  via any optimization routine 

and return to step 2. 

 

4. Example 
 

In this section, a double-matching example is 

presented for the design of a practical broadband 

matching network. The normalized load and generator 

impedance data are given in Table I. It should be noted 

that the given load data can easily be modeled as a 

capacitor 4LC  in parallel with a resistance 1LR  

(i.e. LL CR //  type of impedance), and the generator data 

as an inductor 1GL  in series with a resistance 1GR  

(i.e. LR   type of impedance). Since the given 

impedance data are normalized, there is no need for a 
normalization step. The same example is solved here via 

SRFT and the method proposed in [7]. 

 

Table I 

Given normalized load and generator impedance data 

  LR  LX  GR  GX  

0.0 1.0000 0.0000 1.0000 0.0000 

0.1 0.8621 -0.3448 1.0000 0.1000 

0.2 0.6098 -0.4878 1.0000 0.2000 

0.3 0.4098 -0.4918 1.0000 0.3000 

0.4 0.2809 -0.4494 1.0000 0.4000 

0.5 0.2000 -0.4000 1.0000 0.5000 

0.6 0.1479 -0.3550 1.0000 0.6000 

0.7 0.1131 -0.3167 1.0000 0.7000 

0.8 0.0890 -0.2847 1.0000 0.8000 

0.9 0.0716 -0.2579 1.0000 0.9000 

1.0 0.0588 -0.2353 1.0000 1.0000 

 

The values of the reflection function at port 2 

are initialized as jj  1222   at all sample 

frequencies, and the polynomial )( ph  is initialized as 

1)( 234  ppppph  in an ad hoc manner. Also 

the polynomial )( pf  is selected as 1)( pf , since a 

low-pass matching network is desired. In this example, 

using Fano’s or Youla’s relations [13, 14], the ideal flat 

gain level idealfT ,  is computed as 

7921.011 141/2/2
,   

eeT cLLCR
idealf . 

Then the desired flat TPG  level is selected as 

8.0fT . After running the proposed algorithm, the 

following scattering parameter of the matching network 

is obtained )(/)()(11 pgphpS   

where 

,4937.07685.1

0197.06721.28694.2)( 234





p

pppph
 

,1152.19157.3

4806.52213.68694.2)( 234
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If the obtained scattering parameter or the 

corresponding impedance function is synthesized, 

then the matching network seen in Fig. 2 is 

obtained. 

 
Figure 2. Designed lumped-element double matching 

network; Proposed: 7841.11 L , 6678.12 L , 

6169.11 C , 9165.12 C , 6220.0n , SRFT: 

9422.11 L , 8911.12 L , 519.11 C , 724.12 C , 

5811.0n , Ref [7]: 9415.11 L , 8861.12 L , 

5209.11 C , 7261.12 C , 5817.0n , (normalized). 

 
As seen in Fig. 3, initial performance of 

the matched system looks fairly good. However, it 

can be further improved via optimization utilizing 

the commercially available design package called 

Microwave Office of Applied Wave Research Inc. 

(AWR) [15]. For comparison purpose, the 

performance obtained via the proposed method 

here, via SRFT and via the proposed method in [7] 

are depicted in Fig. 3. 

 
Figure 3. Performance of the matched system designed 

with lumped elements. 

 

The algorithm is implemented via Matlab 

and the problem is solved ten times. The average 

elapsed time for this example is 9217.67  seconds. It 

is 0936.20  seconds via SRFT and 8058.21  sec via 

the method proposed in [7]. Since TPG  

optimization and modeling are implemented 

simultaneously at each iteration, it is a natural 

consequence to have the largest elapsed time for the 

proposed method here. 

The ripple factor 2  for the curves in the 

passband can be calculated as 

,2323.0
7050.0

7050.08688.0

min

minmax2









TPG

TPGTPG
proposed

 

,1744.0
7328.0

7328.08606.02 


SRFT  

  .1784.0
7320.0

7320.08626.02
7Re





f

  

It can be said that the proposed method in [7] 

and SRFT have nearly the same performance. On the 

other hand, the ripple factor in the proposed method is a 

bit larger than the other ripple factors. But it can be stil 

concluded that the proposed method here generates 

pretty good initials for the commercially available 
design packages. 

 

5. Conclusions 
 

The proposed method consists of two major 

parts; TPG  optimization and modeling. In the first part, 

for the selected flat transducer power gain level, 

reflection coefficient ( 2S ) values of the matching 

network is generated as a data set. In the second part, 

this data set is modeled as a bounded real reflection 
coefficient. The crux of the method is to realize these 

two parts at each iteration simultaneously to quarantee 

to get a realizable network. 

Finally, the obtained reflection coefficient 

expression ( 11S ) or the corresponding impedance 

expression ( 11Z ) is synthesized as a lossless two-port 

yielding the desired matching network topology with 
initial element values. Eventually, the actual 

performance of the matched system is improved by 

means of a commercially available CAD tool. 

The features of the proposed method can be 

explained as follows: The polynomial )( pf  is 

constructed by using the transmission zeros of the 

matching network, so they are under the control of the 

designer. Also the proposed method is applicable to 
solve both single and double matching problems with 

lumped, distributed or mixed elements. 

An example has been presented here to 

construct a broadband matching network with lumped 

elements. It was shown that the proposed method 

generates very good initials to further improve the 

matched system performance by working on the 

element values. 
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