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ABSTRACT

In recent years, several trust and reputation management models have been proposed to address the security issues of wireless sensor networks. In 
wireless sensor networks, trust and reputation management systems basically allow sensor nodes to make their own opinion about how trustworthy 
other nodes are so that a higher number of successful transactions can be obtained and the probability of being defrauded reduced. To assess the 
performance of trust and reputation management systems a number of performance metrics were proposed. In this study, with the aim of finding 
out the most suitable trust and reputation model when the number of sensor nodes involved in a wireless sensor network has been increased, the 
performance of EigenTrust, Linguistic Fuzzy Trust Mechanism, PeerTrust and PowerTrust is evaluated in terms of accuracy rate and path length. The 
reason for focusing on this is that if a trust and reputation model is able to achieve the same accuracy rate and path length performance without any 
performance degradation when more sensor nodes are involved in the network, it can be considered as scalable. The results of our simulation studies 
prove that compared to the other models, Linguistic Fuzzy Trust Mechanism provides higher accuracy and less path length scores and is more suitable 
for large-scale deployments of wireless sensor networks.
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Introduction

Wireless sensor networks offer numerous advantages, but because of their distributed architec-
ture, they can be exposed to many security threats [1].  For each type of security threat, there are 
defense techniques in the literature. However, because the nodes in wireless sensor networks 
have limited computing capacity and memory, all defense techniques cannot be used in wire-
less sensor networks. Moreover, although traditional security solutions are able to successfully 
defend against the attacks of outsiders, their mechanisms generally fail when the attacks are 
done by compromised sensor nodes or insiders. While some of those attacks happen because of 
the intentional misbehavior of compromised or selfish nodes, others might be resulted from the 
unintentional behavior of faulty nodes [2, 3]. In this regard, reputation-based security solutions 
play a key role in finding out a mechanism to prevent such attacks by node behavior analysis [3]. 

It is known that one method of minimizing potential security risks when receiving a service 
is to determine whether the server is reliable [4]. This role is handled by trust and reputation 
management system. The main difference between trust and reputation management system 
roles in wireless sensor network is that while a trust management system produces a score 
that indicates the subjective opinion of the node on the reliability of another node or serv-
er, a reputation management system produces the reputation score of a node or server as 
seen by the entire wireless sensor network. In wireless sensor networks, a trust and reputation 
management system enables nodes to reliably assess the quality of offered services and the 
reliability of service providers before deciding to use one or more particular service(s) or inter-
acting with or depending upon a given server. In the literature there are many trust and repu-
tation management models but some of those models are suitable for peer to peer networks, 
particularly for wireless sensor networks. 
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While there are many criteria that affect the performance of 
wireless sensor networks, it is very important that a wireless 
network can be extended to meet new needs in the future. 
Considering the importance of scalability, it is important to 
make evaluations in terms of different performance metrics. 
In this context, different approaches have been proposed to 
ensure scalability in terms of those metrics. In this study we 
mainly focus on the scalability related performance evaluation 
of four well-known models, namely EigenTrust [5], Linguistic 
Fuzzy Trust Mechanism (LFTM) [6], PeerTrust [7] and PowerTrust 
[8]. We particularly focus on accuracy and path length perfor-
mance metrics of the compared models. The rest of this paper 
is as follows. The second section describes EigenTrust, LFTM, 
PeerTrust and PowerTrust trust and reputation management 
models. The third section presents the setting of the simulation 
environment and reports the results, and the fourth section 
concludes this paper.

EigenTrust, LFTM, PeerTrust, & PowerTrust

EigenTrust is a reputation management system that gathers the 
local trust values of all peers with minimal message complexity 
overhead [5]. It relies on asking a peer’s acquaintances about 
their opinions about other peers and the notion of transitive 
trust. Furthermore, the peer will possibly trust the opinions of 
those peers who have delivered it authentic messages or files. 
Because those peers who act honestly about the messages 
or files they deliver will possibly report their local trust values 
honestly [5]. Each peer i is able to retain the number of satisfac-
tory transactions that it carries out with peer j, Sat(i, j) and the 
number of unsatisfactory transactions that it carries out with 
peer j, Unsat(i, j). Then, local trust value Sij is calculated using (1).

 (1)

Before aggregating local trust values, EigenTrust first normal-
izes them. EigenTrust defines a normalized local trust value, Nij, 
using (2).

 (2)

EigenTrust asks for each peer to ask its acquaintances about 
their opinions about other peers. This way it weighs their opin-
ions placed by the trust peer i using (3).

 (3)

where Tik denotes the trust placed in peer k by peer i, based on 
asking its acquaintances.

Linguistic Fuzzy Trust Mechanism adapts a bio-inspired trust 
model similar to the human way of thinking, instead of adapting 
a trust model that makes use of some reasoning mechanisms 
and techniques that cannot be understood by humans [6]. It 
also relies on fuzzy reasoning. LFTM is built upon the enhance-
ment on BTRM-WSN [9]. BTRM-WSN is a bio-inspired algorithm 
based on the notion of well-known ant colony systems [10, 11], 

in which pheromone traces denote the probability of discov-
ering the most reputable node through the most trustworthy 
path. In this way, BTRM-WSN follows the five common steps for 
trust and reputation management models as given in [12]. When 
BTRM-WSN is executed, its algorithm first deploys a group of ar-
tificial ants over the wireless sensor network so that using the 
pheromone traces left by those ants the most trustworthy node 
that provides a certain service can be found. In the second step, 
when a path going to a node that provides the requested service 
is found, a score is given to each of those paths using (4).

 (4)

where Q(Pi) denotes the path returned by ant i, avgi denotes 
the average pheromone of that path, F denotes the path length 
factor, and finally %Antsi denotes the percentage of ants that 
used the same paths as ant i.

In the third step, BTRM-WSN selects the path Pi with the high-
est value of (Pi) as a path that goes to the most trustworthy 
service provider in the wireless sensor network. In the fourth 
step, the client requests the service from the selected node 
explicitly. Then, the client assesses the service it received and 
measures its satisfaction with that transaction. Finally, if that 
service satisfied the client, a reinforcement is made. However, if 
the service provider cheated, a punishment is made [9]. LFTM 
enhances BTRM-WSN by interpreting some concepts including 
goodness, client satisfaction, punishment or reward decision, 
and quality of service at a higher level [6]. Those sophisticated 
features are realized by the application of fuzzy sets, fuzzy log-
ic, and linguistic labels. LFTM selects the service provider with 
a perceived goodness, such as medium, high, or very high, to 
have a transaction with using BTRM-WSN [6]. When the desired 
attributes of the service and the goodness of the service pro-
vider are taken into consideration, the service provider delivers 
a worse, equal, or better service than the expected. A compar-
ison is made between these desired ones and provided ones 
using a set of weights for the attributes of the provided service. 
Then the satisfaction of the client is evaluated and based on it, 
the punishment level is determined [6].

PeerTrust consists of an adaptive, decentralized trust model. 
It relies on a transaction-based feedback assessment system 
and commonly-used trust parameters, namely, feedbacks that 
a peer obtains from other peers, the total number of transac-
tions that a peer carries out, and the credibility of the feedback 
sources, and additional factors in measuring trustworthiness 
of peers, namely, adaptive transaction context factor (ATCF) 
and adaptive community context factor (ACCF), and provides 
a general trust metric to integrate all of those parameters [7]. 
PeerTrust implements its basic trust metrics in two different 
ways and computes its general trust for peer e using (5) [7].

 (5)
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where k represents the normalized weight factors for the col-
lective assessment and l denotes the community context fac-
tor. G(e) represents the total number of transactions carried out 
by peer e with all other peers, p(e,i) represents the other peer 
that participates in peer e’s ith transaction, N(e,i) represents the 
normalized amount of satisfaction that peer e receives from 
peer p(e,i) in its ith transaction, C(e) represents the credibility 
of the feedback delivered by peer e, AT(e,i) represents ATCF for 
peer e’s ith transaction, and finally AC(e) represents ACCF for 
peer e. 

PowerTrust leverages the power-law feedback characteristics. 
Employing a distributed ranking technique, it automatically 
picks a set of power nodes, i.e. the most reputable ones. By 
the use of a look-ahead random walk approach and the pow-
er nodes, it offers good accuracy in terms of global reputation 
and high aggregation speed. Moreover, it is resistant to distur-
bance by malicious peers and quickly adapts to dynamics in 
joining and leaving of peers [8]. PowerTrust obtains all of the 
reputation scores Rj and the normalized local trust scores Lji 
from those nodes j which have had an interaction with node 
i formerly. In this way, it computes the reputation score Ri of 
node i [8]. The weight of power nodes employed by PowerTrust 
is determined by the greedy factor, k. Lji is defined using (6) [8].

 (6)

where Sij denotes the satisfaction of node i regarding the last 
interaction with node j. If i is not an ordinary node, the global 
reputation score of the node, Ri, is obtained using (7). Other-
wise it is obtained using (8).

 (7)

 (8)

Except for the common properties of all trust and reputation 
management models, as abovementioned the methodology of 
behind the compared models, EigenTrust, LFTM, PeerTrust and 
PowerTrust, is quite different. Although this makes it difficult to 
make a quantitative evaluation between them, there are some 
tools that allow researchers to compare the performance of 
trust and reputation management models. Path length, accu-
racy, and power consumption are the leading metrics used in 
most comparison studies. Similarly in this study accuracy and 
path length performance of EigenTrust, LFTM, PeerTrust and 
PowerTrust are compared. For a trust and reputation manage-
ment model, accuracy is an indicator of the success of the mod-
el and shows the percentage that the number of times when 
the model successfully selects trustworthy nodes considering 
the total number of transactions. Path length can be described 
as the average number of hops that leads to the most trust-
worthy nodes selected by the client. Less path length is desir-
able since it is an indicator of better performance in terms of 
response time, energy efficiency, and smoothness in searching 
for trustworthy nodes. 

Performance Evaluation

In reality, there is no standard model that allows a fair compar-
ison between reputation-based trust systems that compete to 
provide higher resilience to attacks or higher level of security 
[11]. The main reason of this is that most reputation-based trust 
systems do not consist of all reputation components and this 
makes the comparison difficult or practically not applicable 
[13]. However, considering the role of scalability in wireless 
sensor networks, in this study we particularly focus on the eval-
uation of accuracy and path length performance metrics. 

Performance evaluation of EigenTrust, LFTM, PeerTrust and 
PowerTrust was carried out by using the simulator proposed 
in [14]. The distribution of sensor nodes in the environment for 
50 nodes is given in Figure 1 and parameters preferred in the 
simulation environment are given in Table 1. The positions of 
sensor nodes for each scenario (total number of sensor nodes: 
50, 100, and 150) were the same for all the trust models and 
sensor nodes did not have the capability of movement. Oscil-
lating server behavior was not allowed; hence, malicious serv-
ers did not become malicious or conversely after a number of 
iterations. In the simulation studies, malicious servers were not 
allowed to form collusions among them. 

Table 1. Parameters preferred in the simulation environment

Parameter Value

Number of repetitions 50

Number of wireless sensor networks 50

Number of sensor nodes in each wireless 
sensor network 50, 100, 150

Percentage of clients 15

Percentage of relay servers 5

Percentage of malicious servers 70

Delay (second) 0

Radio range (m) 12

Figure 1. Simulation scenario for 50 nodes. Please note that green 
dots represent benovelent nodes, red dots represent malicious 
nodes, blue nodes represent relay nodes, and pink dots represent 
clients, respectively
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As can be seen from Figures 2-4, increasing the number of sen-
sor nodes in the environment did not have significant negative 
impact on the accuracy, i.e. the success rate when selecting 
a trustworthy or benevolent server,  and path length perfor-
mance metrics of EigenTrust. It can be concluded that Eigen-
Trust is scalable and can be implemented in large-scale deploy-
ments of wireless sensor networks.

As can be seen from Figures 5-7, increasing the number of sen-
sor nodes in the environment did not have negative impact on 
the accuracy and path length performance metrics of LFTM. 
However, when there are more sensor nodes in the environ-
ment, LFTM provided higher accuracy and almost the same 
path length. It can be concluded that LFTM is highly scalable 
and can be implemented in large-scale deployments of wire-
less sensor networks.

Figure 2. a, b. Results obtained using EigenTrust (Number of 
wireless sensor networks: 50, Number of nodes: 50). Accuracy (%) 
(a), path length (m) (b)

a

b

Figure 4. a, b. Results obtained using EigenTrust (Number of 
wireless sensor networks: 50, Number of nodes: 150). Accuracy (%) 
(a), path length (m) (b)

a

b

Figure 5. a, b. Results obtained using LFTM (Number of wireless 
sensor networks: 50, Number of nodes: 50). Accuracy (%) (a), path 
length (m) (b)

a

b

Figure 3. a, b. Results obtained using EigenTrust (Number of 
wireless sensor networks: 50, Number of nodes: 100). Accuracy (%) 
(a), path length (m) (b)

a

b
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Similarly, as can be seen from Figures 8-10, increasing the num-
ber of sensor nodes in the environment did not have negative 
impact on the accuracy and path length performance metrics 
of PeerTrust. It can be concluded that PeerTrust is scalable and 
can be implemented in large-scale deployments of wireless 
sensor networks, too.

Figure 8. a, b. Results obtained using PeerTrust (Number of wire-
less sensor networks: 50, Number of nodes: 50). Accuracy (%) (a), 
path length (m) (b)

a

b

Figure 9. a, b. Results obtained using PeerTrust (Number of wire-
less sensor networks: 50, Number of nodes: 100). Accuracy (%) (a), 
path length (m) (b)

a

b

Figure 7. a, b. Results obtained using LFTM (Number of wireless 
sensor networks: 50, Number of nodes: 150). Accuracy (%) (a), path 
length (m) (b)

a

b

Figure 6. a, b. Results obtained using LFTM (Number of wireless 
sensor networks: 50, Number of nodes: 100). Accuracy (%) (a), path 
length (m) (b)

a

b
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However, as can be seen from Figures 11-13, although in-

creasing the number of sensor nodes in the environment did 

not have negative impact on the accuracy of PowerTrust, it 

resulted in worse path length performance. It can be conclud-

ed that in terms of accuracy, PeerTrust is scalable and can be 

implemented in large-scale deployments of wireless sensor 

networks, too.

When all the results are taken into consideration, LFTM ob-
tained higher accuracy and less path length scores compared 
to EigenTrust, PeerTrust and PowerTrust. Although the simula-
tion studies in this study were limited, each simulation study 
was repeated 50 times to obtain average values of accuracy 
and path length. LFTM seems to be more suitable for large-
scale deployments of wireless sensor networks. However, it 
should be taken into consideration that the performance of all 

Figure 10. a, b. Results obtained using PeerTrust (Number of 
wireless sensor networks: 50, Number of nodes: 150). Accuracy (%) 
(a), path length (m) (b)

a

b

Figure 12. a, b. Results obtained using PowerTrust (Number of 
wireless sensor networks: 50, Number of nodes: 100). Accuracy (%) 
(a), path length (m) (b)

a

b

Figure 13. a, b. Results obtained using PowerTrust (Number of 
wireless sensor networks: 50, Number of nodes: 150). Accuracy (%) 
(a), path length (m) (b)

a

b

Figure 11. a, b. Results obtained using PowerTrust (Number of 
wireless sensor networks: 50, Number of nodes: 50). Accuracy (%) 
(a), path length (m) (b)

a

b
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reputation models depends on the application scenarios and 
most prioritized performance metrics. Moreover, in open net-
work environments such as wireless sensor networks, the trust 
between sensor nodes can dynamically vary with behavior and 
time and the trust value computed by the applied model can 
change depending on the communication behavior between 
the nodes, too [15]. Hence, in every trust and reputation mod-
el defining trust relationships while improving the efficien-
cy of the model becomes a major issue [15]. In this regard, a 
multi-model trust and reputation system that allows switching 
to the most appropriate trust model might be quite useful [4].

While the results given in this paper can be useful for research-
ers and practitioners, in addition to accuracy and path length, 
other metrics such as radio range, hop count, packet loss and 
energy consumption should also be considered in order to en-
hance accuracy of a computed trust value. In addition, most 
reputation-based trust management systems are questionable 
in practice, because the predefined threshold may significant-
ly deviate from the practical situation [16]. Another limitation 
of most reputation-based trust management systems is that 
they compute trust values based on interactions among sen-
sor nodes. On the other hand, they generally do not consider 
how to preserve privacy in the computation of the trust values 
[16].  Finally, most of them rely on entity-centric mechanisms 
and evaluate trustworthiness based on the past behavior of 
nodes and the recommendations from neighbor nodes; they 
do not take how to efficiently predict future trust values into 
account [16]. Considering the shortcomings of the existing 
trust and reputation management systems, exponential dis-
tribution was proposed to enhance the accuracy of trust as-
sessment [17]. Compared to the existing trust and reputation 
management models that rely on the beta distribution, the ex-
ponential distribution approach is based on the time interval of 
independent random events and only employs the time inter-
val between successive neighbor cooperation to compute trust 
values without taking the other states into consideration. This 
way, it prolongs the network lifetime significantly. Although 
the models evaluated in this study provide satisfactory accura-
cy and path length performance for wireless sensor networks, 
energy consumption is an important factor for the lifetime of 
sensor nodes. Therefore, novel schemes that can reduce energy 
consumption significantly are needed [18, 19].

Conclusion

The decentralized nature of wireless sensor networks makes 
them exposed to a number of security attacks from malicious 
servers. Trust and reputation management models proposed 
for wireless sensor networks help nodes to decide how trust-
worthy or reputable another node is before realizing a trans-
action.  Each trust and reputation management model has 
some distinct advantages and disadvantages; therefore, it can 
provide high accuracy in some scenarios or vice versa. Scal-
ability is an important factor for the long-term reliable oper-
ation of wireless sensor networks and an indicator of whether 
a wireless sensor network can provide the same service at the 

same performance when it involves more nodes. In this paper 
a number of simulation studies were performed in order to 
find out which one of EigenTrust, LFTM, PeerTrust and Power-
Trust is more scalable and suitable for large-scale deployments 
of wireless sensor networks. As given in the paper, LFTM ob-
tained slightly better accuracy compared to the other models 
but much better range performance in the simulation studies 
realized in this study. However, since there is a slight difference 
in the results of the compared models, if a different node dis-
tribution is applied, the results might change. Future work of 
this study consists of field tests using a set of real sensor nodes.
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