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ABSTRACT

Malaria is known as an acute febrile disease caused by the bite of female Anopheles mosquitoes, and it manifests itself with symptoms such as headache, 
fever, chills, vomiting, and fatigue. The diagnosis of malaria is still based on manual identification of Plasmodium parasitized cells in microscopic 
examinations of blood cells known as parasite-based microscopy diagnostic testing. The accuracy of this manual diagnosis method is clearly affected 
by the level of microscopist’s experience, which makes this diagnosis method susceptible to manual error and time consuming. Diagnoses of diseases 
made using deep-learning methods have had great repercussions in the medical world, especially in recent years; and this indicates that the diagnosis 
of malaria can also be achieved by deep-learning methods. On the basis of this fact, this paper presents a novel deep-learning-based malaria disease 
detection technique. A convolutional neural network (CNN) architecture, which has 20 weighted layers is designed and proposed to identify parasitized 
microscopic images from uninfected microscopic images. A total of 27,558 thin blood cell images were used to train and test the CNN model, and 
95.28% overall accuracy was obtained. The experimental results on large clinical dataset show the effectiveness of the proposed deep-learning method 
for malaria disease detection.
Keywords: Convolutional neural network, deep learning, image classification, malaria disease detection

Introduction

Malaria is a contagious and deadly disease, which has been declared as an endemic in a lot of 
countries by the World Health Organization (WHO) [1]. It is caused by a virus known as Plasmo-
dium parasite, which lives in the mosquito’s body and is injected into affected person’s blood 
once the mosquito bites the person [2]. In the 1000s of years of humanity’s war with malaria, 
human beings have often been vulnerable to this disease. According to the reports of the 
WHO, the number of malarial cases and the number of people who have died from malaria in 
2019 alone is 229 million and 409,000, respectively [3]. Another important statistic that stands 
out among these reports is that 67% (274,000) people who died from malaria disease were 
children under the age of five years, making it one of the leading causes of child mortality in 
the world. African countries, where approximately 94% of the number of malaria cases and 
deaths worldwide are seen, have been the disproportionate and indisputable center of this 
disease [3]. Figure 1 shows the annual number of deaths because of malarial disease reported 
by the Institute of Health Metrics and Evaluation (IHME) [4, 5]. According to this graph, the 
disease caused 670,000 deaths in 1990, peaked at 930,000 deaths in 2004, and caused 620,000 
deaths in 2017.

Although there are therapeutic drugs for the treatment of the malaria, there is still not an 
effective vaccine against it, which makes it an active field of research. As malaria is a disease 
that can be transmitted from person to person, it is vital to diagnose it early and, thus, prevent 
its transmission. Making an accurate and successful diagnosis of malaria remains a task that 
only experienced microscopists can accomplish. As a matter of fact, microscopists examine 
billions of blood cell images by manually counting the parasites to be able to detect malaria 
every year throughout the world. However, an accurate and successful diagnosis of malaria 
cannot be a standard method common to all circles as it relies heavily on the experience and 
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skills of the microscopists. Besides, the insufficient number of 
microscopists constitutes a significant deficiency in combating 
malaria especially in developing countries. Computer-aided 
automated malaria parasite detection systems are superior to 
microscopic examinations. For example, deep-learning based 
malaria detection is more objective and quantitative compared 
with microscopic diagnosis, which is qualitative. These fully 
automatic methods are more reliable and standardized. More-
over, they allow clinicians to examine more patients, which 
make them faster than microscopic methods. Another advan-
tage of deep-learning diagnosis methods over other manual 
diagnosis methods is that they are more economical such that 
they can reduce diagnostic costs. 

Effective and successful studies of machine-learning methods 
in medical image processing and interpretation in the world 
have created a big trend for automatic diagnosis systems over 
the past decade. CNN has been one of the most commonly 
used automatic diagnosis technique among other deep-learn-
ing methods. CNN searches for and extracts the pathological 
features that appear different from the remaining tissues to 
be used as clinical decision-making tools [6, 7]. Despite high-
ly promising findings of deep-learning methods for disease 
detection, just a few studies related to this subject have been 
reported. For instance, Rahman et al. [2] have proposed a deep 
CNN architecture consisting of a total of 19 weighted layers for 
malaria detection from microscopic images. They also investi-
gated the effects of stain normalization, standardization, and 
data augmentation pre-processing techniques with several 
other pre-trained CNN models to evaluate the performance 
of transfer learning on malarial parasite detection. Another re-
searcher group, Rajaraman et al. [8] have introduced an optimal 
deep neural ensemble consisting of custom and pre-trained 
CNN for malaria detection to improve robustness and gener-
alization. Dong et al. [9] have shown that CNN-based classifi-
cation of parasitized and uninfected thin blood microscopic 
images obtained a higher accuracy than that of kernel-based 
classification. Another research study [10] has demonstrated 
that shallow deep belief network could achieve a promising 
result in detecting the malarial parasite using peripheral smear 
images. Das et al. [11] have obtained an overall accuracy of 84% 

for detecting malaria using machine-learning approach from 
light microscopic images of peripheral smears. Ross et al. [12] 
have used an automated image processing method based on 
two-stage tree classifier and achieved an accuracy of 73% in 
diagnosis of malaria from thin blood smears. Researchers who 
are interested in more literature can investigate the publica-
tions [2, 13], which are rich reference sources in the field of ma-
chine-learning based malaria detection. 

In this study, we aimed to detect malaria from red blood cell im-
ages using a fully automatic deep-learning model. A novel CNN 
architecture that consisted of 20 layers was prepared for ma-
larial parasite detection. The proposed CNN model was trained 
on 22,046 thin blood images and tested on 5,512 thin blood 
images. The proposed method was validated using accuracy, 
area under the curve (AUC) of receiver operating characteristic 
(ROC) curve, specificity, sensitivity, and precision performance 
evaluation metrics. Experimental results on large microscopic 
data show the effectiveness of the proposed method. The rest 
of this study is organized as follows. The following section elab-
orates on the principles of CNN architecture. The reader can 
find explanation of each CNN layer and detailed mathematical 
formulas to create CNN layers in this section. Section 3 intro-
duces the proposed CNN method. Section 4 includes experi-
mental results, performance evaluation, and comparison of the 
proposed method with the state-of-art method. Finally, section 
5 concludes the paper.

Basics of CNN Architecture

CNN layer

Input Layer
CNN’s first layer is the input layer. In this layer, the data is fed raw 
to the neural network. The image is converted to a matrix of 
numeric expressions and then exported to the input layer. The 
data size in this layer in the digital environment is quite wor-
thy of note for the success of the proposed model. Selecting a 
high input image size can result in high memory requirements, 
training time, and test time per image. It can also increase net-
work success. Selecting a low input image size reduces memo-
ry requirements and reduces training time. However, the depth 
of the network to be installed decreases, and its performance 
can decrease. In performing image processing, a proper image 
size for input stage should be selected for network depth, hard-
ware calculation cost, and network success.

Convolutional layer
This is the transformation layer that applies a specified filter 
over the whole input image. Because of this contribution of 
convolution filters, these filters are indispensable parts of lay-
ered architectures. Filter size may have 2 × 2, 3 × 3, 5 × 5, 7 
× 7, etc., dimensions. The filters apply convolution process to 
the images coming from the previous layer and generate the 
output data. This filtering process results in a feature map (acti-
vation map). The feature map is the region where the features 
specific to each filter are discovered. The coefficients of these 

Figure 1. Annual number of deaths from malaria (Source: The In-
stitute of Health Metrics and Evaluation)
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filters during training of CNNs vary with each learning itera-
tion in the training set. The network, thus, determines which 
regions of the data are important to be able to determine the 
important features [14]. Applying a filter to the image and gen-
erating the feature map is shown in Figure 2.

In this layer, new feature sets are obtained by applying previ-
ously determined filters on the inputs. Each filter applied is rep-
resented by matrices of the specified size. Each filter applied to 
the input attempts to detect a different feature. Because very 
large filters can cause some features to be missed on the in-
put, the dimensions of the filters are very important. The coeffi-
cients of the filters represent the weights in the artificial neural 
networks, and in each step, these filter coefficients are updated 
according to the error value to obtain new filters. Each filter 
circulates all pixels in sequence on the input. The input coeffi-
cients and the filter coefficients are multiplied as dot product, 
and this is done for each channel of the input image. As shown 
in the equation (1), feature maps are formed by multiplying the 
input matrix and weight matrices. 

 (1)

where n is the number of layers in the convolutional layer, b is 
a bias, and: 

i = the index of input neuron node

j = the index of output neuron node

f() = an activation function

Fj= upper level feature map

Rectified linear units layer (ReLU)
ReLU layer is a piecewise linear transfer function also known as 
the activation layer and is followed by the convolution layer. 
This layer transfers the positive inputs directly to the output 
but outputs zero for the negative ones. The network is linear 
at this stage because particular mathematical operations are 
performed in the layer used before this layer, that is, convolu-

tional layer. ReLU layer is applied to bring this deep network 
into a non-linear structure, and this ensures that the network 
learns faster [14].

2.1.4. Pooling Layer
In the CNN architectures, the pooling layer comes after the 
ReLU layer and decreases the size of the input for the next con-
volution layer. This process is also known as “down sampling.” 
The reduction in size as a result of this layer leads to informa-
tion loss. A loss of this type is useful to the network in terms of 
two reasons. First of all, it produces less computational load to 
the following CNN layers. Second, it prevents the system from 
memorizing. Certain filters are defined in the pooling layer as 
in the convolution layer. These filters are applied on the image 
and process the maximum values of the pixels in the image 
(maximum pooling) or the average of the values (average pool-
ing). As maximum pooling performs better than other pooling 
types, it is commonly preferred to other pooling types [14, 15]. 
Pooling layer performs the pooling process to all the images 
by the number of filters formed as a result of the convolutional 
layer [16]. Pooling is optional for the CNN, and some architec-
tures do not use pooling layer. An example of how pooling is 
performed can be seen in Figure 3. Input image size is 4 × 4 and 
filter size is 2 × 2. The resulting image after sliding the input 
image with slide = 1 is 3 × 3 and with slide = 2 is 2 × 2 [14].

Fully connected layer
The fully connected layer together with the convolutional layer 
are the most important layers of CNN. The result of breaking 
down the image into features in the previous layers feeds into a 
fully connected layer, which determines the final classification. 
As the name implies, all neurons in the previous layers are con-
nected with fully connected layer.

For instance, if the matrix size generated by the last layer in the 
CNN architecture is selected as 25 × 25 × 256 = 160,0000 × 1 
and the matrix size in the fully connected layer is selected as 
4,096 × 1, a total weighting matrix of 160,000 × 4,096 occurs. 
Therefore, this layer is called a fully connected layer. It forms 
the last layers of convolutional neural networks. In the layers up 
to the fully connected layer, feature extraction, size reduction 
and normalization operations are performed for the inputs. The 

Figure 2. A 3 × 3 filter applied on an input image of size 5 × 5 × 3 
in convolution layer of CNN

Figure 3. Implementation of max pooling with 2 × 2 filter in 4 × 
4 input image
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error is calculated according to the output. Weights are updat-
ed again according to the calculated error value, and this cycle 
continues until the desired convergence value is obtained or a 
certain number of steps are completed. 

Softmax layer
Softmax layer is a normalized exponential function, which is 
used to bring all the predicted values between 0 and 1 using 
the equation (2). 

 (2)

where y(z) is the probability of any class, j indicates these class-
es, k is the total number of classes.

Classification layer
Classification layer comes after the fully connected and Soft-
max layers. Classification is done in this layer of deep-learning 
architectures. The number of classification objects is equal to 
the output value of this layer. For example, if the classifica-
tion of 15 different objects is to be made, the classification 
layer output value must be 15. If the output value is select-
ed as 4,096 in the fully connected layer, a weight matrix of 
4,096 × 15 is obtained for the classification layer according 
to this output value [14]. In the classification, 15 different ob-
jects produce output at a certain value in the range 0–1. The 
output that produces close to 1 output is understood to be 
the object that the network predicts. The classifications layer 
uses cross-entropy loss to estimate the classification loss and 
provides the final predicted categorical label for each input 
image [17]. In this paper, cross-entropy loss [18] is calculated 
using equation (3). 

 (3)

where q(x) is the estimate for true distribution , p(x) is the target 
labels vector, and q is the output vector from the SoftMax layer.

Proposed deep-learning method

Proposed CNN architecture
Deep-learning methods have been successfully used for the 
diagnosis of various diseases, especially over the past decade. 
One the most efficient class of deep-learning methods is ob-
viously CNN. Therefore, malaria diagnosis is made using CNN 
technique in this study.  Figure 4 shows the proposed CNN 
architecture. This CNN architecture includes 20 weighted lay-

ers. This is a novel CNN architecture designed for malaria dis-
ease detection. There are four convolution layers, four ReLU 
layers, four normalization layers, four max pooling layers, one 
fully connected layer, one Softmax layer, and one classifica-
tion layer in this architecture. Thin blood images are re-sized 
to 44 × 44 × 3 and fed to the input layer. Convolution layers 
are applied to the input images to generate feature maps for 
training the network. ReLU layers are followed by convolution 
layers and used for activations. Max pooling layers come just 
after ReLU and normalization layers and are used for pooling 
process, which decreases the size of the input, thus reducing 
the computation burden. After that process, the fully con-
nected layer with Softmax layer makes the final prediction 
regarding whether there is malaria or not. Classification layer 
has two neurons at output, each neuron for each class: “par-
asitized” or “uninfected.” Hyper-parameters of the CNN model 
are as important as the architecture. In this proposed mod-
el, stochastic gradient descent momentum is used for mini-
mizing the loss function and updating the parameters of the 
neural network. Three epochs are performed with mini-batch 
size equal to 64. The total number of iteration is 1,032 and 
the number of iterations per epoch is 344. The initial learning 
rate (ILR) and momentum (M) are tuned as 0.002 and 0.9, re-
spectively.  

Performance assessment
It is necessary to evaluate the success of the classification task 
after the classification task is performed. The performance of 
the classification tasks can be evaluated using various perfor-
mance evaluation metrics. For example, confusion matrix is the 
main source of these metrics. Confusion matrix is known as a 
specific two-dimensional table with “actual” and “predicted” la-
bels. The actual label is for instances in an actual class, whereas 
the predicted label is the system output predictions. Therefore, 
the confusion matrix, being an error matrix, provides visually 
very important information for the performance evaluation. 
In this study, the performance of the proposed CNN method 
is evaluated using accuracy, AUC, sensitivity, specificity, and 
precision performance evaluation metrics, which are derived 
from confusion matrix. Equations (4) through (7) show the 
corresponding formulas that belong to these metrics, respec-
tively. True positive (TP) is the number of system’s positive pre-
dictions, which are actually positive. True negative (TN) is the 
number of system’s negative predictions, which are actually 
negative. False positive (FP) is the number of system’s positive 
predictions, which are actually negative. False negative (FN) is 
the number of system’s negative predictions, which are actual-
ly positive.

 (4)

 (5)

 (6)

 (7)

Figure 4. The proposed CNN architecture
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Results and Discussion

Dataset
This study is implemented on the Giemsa-stained thin blood 
(red blood cell) images from the dataset created by Nation-
al Institute of Health (NIH) [19]. These images were collected 
from 50 healthy patients and 150 patients infected with Plas-
modium falciparum. The dataset contains a total of 27,558 red 
blood cell images; 13,779 infected and 13,779 uninfected. An 
expert slider reader pathologist manually annotated the imag-
es. Some sample images from this dataset are demonstrated 
in Figure 5. The differences in colors are owing to the different 
stains during image acquisition. Malaria infected images have 
numerous forms of parasites.

Experiment platform and time consumption
The experiments of this study were performed on an NVIDIA 
GeForce GTX-850M platform that had Intel Core i7 5400 GPU, 
2.60 GHz, 16.0 GB RAM, whereas the software platform con-
sisted of Windows 10 (64-bit) operating system software plat-
form using MATLAB 2019a version. Thirty four minutes elapsed 
throughout the training of the proposed CNN model.

Experimental results
The dataset was divided into training (60%), validation (20%), 
and test (20%) sets; therefore, 16,534 images were stored for 
training, 5,512 images for validation, and 5,512 images for test-
ing purposes. For dataset training and testing, the five-fold 
cross-validation procedure was used. Five independent itera-
tions were performed. One of the folds was used as the test set, 
and the remaining were used as the training set. This process 
was repeated until each unique fold had been used as the test 
set. The CNN model performs the learning process in a hierar-

chical structure, consisting of multiple trainable layers, one after 
the other. After the input data are received, the training process 
is carried out by making layer-by-layer transactions on CNN. The 
first convolution layer in the CNN model generally learns very 
basic structures (features), such as colors and edges. More de-
tails and complicated features are learned in deeper convolution 
layer. The features that the CNN learns after the training may be 
understood by visualizing the activations of the convolution lay-
ers. Figures 6 (a) and 6 (b) show the activations of the first and 
second convolution layers, respectively, after a parasitized red 
blood cell microscopic image is fed into the CNN model. It can 
be seen in Figure 6 (a) that color and edges that are simple fea-
tures are learned in this early layer, whereas in Figure 6 (b) para-
site structures that are more complicated features are learned in 
the deeper convolution (second) layer. As a consequence, one 
can discover the features that are learned by the network using 
this visualization of the activations.

Once the classification task is performed, the performance of 
the implementation is evaluated using confusion matrix. Con-
fusion matrix is shown in Figure 7. Vertical axis in the confu-
sion matrix represents the system’s output predictions (output 
class), whereas the horizontal axis represents ground truth 

Figure 5. Samples of thin blood cell images drawn from dataset 
that contains parasitized and uninfected images

Figure 6. a, b. Activations of first (a) and second convolutional 
layer (b)
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(target class) labels. Performance evaluation of the proposed 
method is assessed using accuracy, AUC, sensitivity, specificity, 
and precision whose formulae are given in equations (4–7). De-
tailed results of the performance evaluation metrics are shown 
in Table 1. A total of 2,756 parasitized and 2,756 uninfected mi-
croscopic red blood cell images were used for testing the pro-
posed CNN model, which was designed to diagnose malaria. 

Table 1 demonstrates that the proposed method can detect 
malaria with an accuracy of 95.28%, sensitivity of 0.950, speci-
ficity of 0.955, and precision of 0.955. 

Accuracy and loss plots are demonstrated in Figure 8. As the 
figure shows clearly, 95.28% accuracy is achieved after 1,032 
iterations. Figure 9 is the ROC curve of the classification task. 
Y-axis of ROC curve is true positive rate (TPR) and X-axis is false 
positive rate (FPR). This ROC curve figure shows that AUC value 
which is a measure of the entire two-dimensional area under-
neath the entire ROC curve is found to be 0.9886.

Figure 7. Confusion matrix

Figure 9. Receiver operating characteristic curve

Figure 8. Accuracy and loss plot

Table 1. Accuracy metrics in terms of TP, TN, FP, FN, Accuracy, Specificity, Sensitivity, and Precision

Metrics

Architecture Classes TP TN FP FN Accuracy Specificity Sensitivity Precision Total

Proposed CNN Architecture

Parasitized 2619 2633 123 137 95.28% 0.955 0.950 0.955 2756

Uninfected 2633 2619 137 123 95.28% 0.950 0.955 0.951 2756

TP: True Positive; TN: True Negative; FP: False Positive; FN: False negative; CNN: Convolutional Neural Network

Figure 10. Four input test images results

Uninfected, 97.8%

Parasitized, 99.9%

Parasitized, 100%

Uninfected, 98.7%
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Figure 10 shows the classification results of the proposed CNN 
model, which is designed to classify input images as parasit-
ized (malaria) and uninfected (healthy). The model does not 
only predict malaria but also gives the prediction probability 
of the output class. Of the four test images, two input images 
are predicted as parasitized with 100% and 99.9% probabilities, 
respectively. The remaining two input test images are classified 
as uninfected with 97.8% and 98.7% probabilities, respectively. 

Class activation map (CAM) tool is used to understand the de-
cision making of the proposed CNN. Figure 11a is a parasitized 
input image, whereas Figure 11c is the uninfected input im-

age. Figure 11b is the CAM output of a parasitized cell image, 
whereas the Figure 11d is the output of an uninfected image. 
Activation in the CAM outputs show that the CNN model has 
learned task-specific features.

Comparison with state-of-the-art methods
This section is devoted to the comparison of the proposed 
method with state-of-the-art methods. Dong et al. [9] have 
shown that CNN-based classification of parasitized and unin-
fected thin blood microscopic images could obtain an accuracy 
of 95% using three well-known pre-trained CNN architecture, 
such as LeNet, AlexNet, and GoogleNet. The total number of 
images was 2,565, which included 1,034 parasitized and 1,531 
uninfected images. Bibin et al. [10] have proposed an automat-
ed decision support system based on deep learning to detect 
the malarial parasite from peripheral blood smear images. They 
used 4,100 microscopic images and obtained 96.21% accuracy. 
Das et al. [11] have used the machine-learning approach to dis-
criminate between healthy and malarial parasite infected im-
ages with 84% accuracy. Ross et al. [12] have presented an au-
tomatic image processing technique that consists of two-stage 
tree classifier to identify malarial parasites present in thin blood 
smears with an overall accuracy of 73%. Vijayalakshmi et al. [20] 
have proposed transfer-learning approach based on visual 
geometry group (VGG) network and support vector machine 
(SVM) to identify parasitized malarial blood cell images. They 
achieved 93.13% classification accuracy using 1,530 images. 
Narayanan et al. [21] have proposed image pre-processing ap-
proach with a fast CNN model for malaria parasite detection. 
They achieved 96.7% overall accuracy using the same dataset 
used in the proposed study. In another study by Narayanan et 
al. [22], they have used GoogleNet and ResNet for the detection 
of Plasmodium on cell images captured using digital microsco-
py. They obtained 96.6% accuracy using ResNet and 96.5% ac-
curacy using GoogleNet with pre-processing approaches. The 

Figure 11. a-d. Class activation map (CAM) visualization results: (a) 
Parasitized input image, (b) CAM output of parasitized input image, (c) 
Uninfected input image, (d) CAM output of uninfected input image

Table 2. Detailed comparison of the proposed method with state-of-the-art methods

Model
Overall 

accuracy
Number of 

images Method
Publication 

year

Ross et al. [12] 73.00% 15 Decision tree 2006

Das et al. [11] 84.00% 27,558 Bayesian classifier and SVM 2013

Mandal et al. [23] 88.77% 37 Segmentation-Normalized cuts 2010

Le et al. [24] 92.69% 200 Semi-automatic image processing 2008

Vijayalakshmi et al. [20] 93.13% 27,558 Pre-trained CNNs 2019

Dong et al. [9] 95.00% 2,565 Pre-trained CNNs 2017

Bibin et al. [10] 96.21% 4,100 Deep Belief Network 2017

Narayanan et al. [21] 96.7% 27,558 Custom CNN 2019

Narayanan et al. [22] 96.6% 27,558 Pre-trained CNNs 2019

Proposed Method 95.28% 27,558 A Novel CNN 2021
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proposed CNN architecture in this paper achieved an overall 
accuracy of 95.3%, trained and tested on 27,558 thin blood 
images. This experimental result on large microscopic image 
dataset shows the effectiveness of the proposed method con-
sidering the literature. Table 2 shows a detailed comparison of 
the results found using the proposed method with the results 
of the state-of-the-art methods. 

Conclusion

One of the hurdles to successful mortality reduction has been 
inadequate diagnosis of malaria. However, the most effective 
progress in the prevention of the disease is early diagnosis, 
which enables interrupting its transmission. In this study, we 
presented a novel and fully automatic method using deep con-
volutional neural networks for detection of malaria from red 
blood cell images. A novel CNN architecture was designed and 
proposed for malarial disease diagnosis using a large public-
ly available dataset. Detection of malaria was achieved with a 
high accuracy of 95.28%. Experimental results on a large clin-
ical dataset show the effectiveness of the proposed CNN ar-
chitecture. It is believed that owing to its simplicity, the model 
proposed in this study can be readily used in practice to help 
physicians diagnose malaria accurately. This fully automatic 
deep-learning method has the potential to allow clinicians to 
examine more patients, which makes it faster than microscopic 
malaria examination methods [9-12, 20-24].
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