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ABSTRACT

This study assesses the feasibility of the Henry gas solubility optimization (HGSO), a recent novel metaheuristic algorithm, to achieve optimal parameters 
for a power system stabilizer (PSS) employed in a power system. To do so, the design problem was defined as an optimization problem and an integral of 
time-multiplied absolute error objective function was adopted. This objective function was minimized to tune the PSS parameters and improve the dynamic 
performance of the power system. The performance was evaluated using a single-machine infinite-bus system, and the obtained results were compared 
with atom search optimization and conventional based designed systems. The proposed HGSO approach for tuning PSS parameters has been shown to 
suppress electromechanical oscillations and provide a better statistical performance and convergence ratio.
Keywords: Damping oscillations, dynamic stability, Henry gas solubility optimization, power system stabilizer

Introduction

Poorly damped oscillations are undesirable for power grid operation because they threaten 
the security and integrity of the grid. This is particularly crucial for current power grids because 
power system interconnections tend to grow. In addition, the expected lifetime of power sys-
tem machines may also decrease in such cases. A small disturbance may cause the collapse 
of the entire system if it is not appropriately treated, and this could lead to interruption of 
power supply and result in financial loss. If a system is not damped adequately, low-frequency 
oscillations generate oscillatory instability and cause system separation. Therefore, damping 
a power system is crucial in terms of enhancing its power transfer capability and stabilizing 
it. The latter requires small signal stability because it is characterized by low-frequency oscil-
lations. In general, small signal stability is enhanced and the performance of single-machine 
infinite-bus (SMIB) and multi-machine power systems damped using a power system stabilizer 
(PSS). Using a PSS helps compensate for the phase lag error between the exciter input and the 
electrical torque and generates a torque component on the rotor [1, 2].

Despite the nonlinear structure of power systems in general, the design of a conventional PSS 
relies on linear control theory. This technique considers a linearized model of a power system. 
The parameters and structure of PSS are regulated to achieve the best performance around 
a nominal operating point. As noted above, the operating conditions of a power system can 
fluctuate consistently over a wide range because of their nonlinear nature. In addition, the 
configuration of a power system changes over time, which requires the adjustment of PSS 
parameters to maintain performance. Therefore, achieving an optimum performance for the 
entire operating condition is not feasible using conventional PSSs including fixed parameters. 
Alternative control techniques are available for PSS design, including feedback linearization, 
self-tuning regulators, and pole placement and shifting. However, intensive computations and 
long computer processing time are considerable disadvantages of those techniques [3].
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For both SMIB and multi-machine power systems, several meta-
heuristic techniques have recently been suggested as ways to 
handle offline tuning of PSS parameters by considering a wide 
range of operating conditions. Some of those techniques in-
clude harmony search [4], artificial bee colony [5], cuckoo 
search [6], biogeography-based optimization [7], bat [8], salp 
swarm [9], firefly [10], kidney-inspired [3], improved whale op-
timization [11], particle swarm optimization [12], and farmland 
fertility [13] algorithms. The main advantage of employing 
such techniques is the ability to explore optimal or near-opti-
mal solutions of the optimization problem because they have 
derivative-free structures.

The Henry gas solubility optimization (HGSO) algorithm is a re-
cent metaheuristic search algorithms proposed to solve complex 
optimization problems [14]. HGSO has already been adopted in 
several applications, such as tackling issues related to maximum 
power point tracking techniques [15], enhancing classification 
accuracy in feature selection [16], predicting parameters of sup-
port vector regression [17], and designing proportional integral 
derivative (PID) [18] and fractional order PID [19] controllers for 
direct current motor speed regulation and automatic voltage 
regulator control, respectively. However, there are still many re-
al-world engineering problems that can be used to evaluate the 
performance of HGSO. Therefore, this study assesses the perfor-
mance of this novel algorithm for a new engineering problem by 
investigating the applicability of HGSO for effective PSS design 
in a SMIB system for the first time.

The research was conducted by formulating the design of the 
suggested PSS damping controller as an optimization prob-
lem, and the HGSO algorithm was used to search for optimal 
controller parameters. The stability performance of the SMIB 
system was improved by minimizing the integral of time multi-
plied absolute error (ITAE) as an objective function. Eigenvalue 
analysis and the results of nonlinear time domain simulation 
show the effectiveness of the proposed controller in terms of 
providing good damping characteristics to system oscillations. 
In addition, the superiority of the proposed method was also 
validated for PSS tuning via comparisons with conventional 
and no controller cases and an atom search optimization (ASO) 
algorithm–based controller.

Henry Gas Solubility Optimization
HGSO is a recently proposed global optimization approach 
based on Henry’s law of gas solubility [14]. This law explains 
the solubility of gases in a fluid. The mathematical modeling 
of this optimization technique can be represented in the fol-
lowing steps.

Initialization
The following equation is used to randomly initialize the search 
using N gas particles.

 (1)

In (1), Xi denotes the position of the ith particle, r represents a 
number within [0,1] and randomly generated, t is the iteration 

number, and Xmin is the lower bound of the search space and 
Xmax is the upper bound. j(Hj(t)), Pi,j , and j(Ci) represent Henry’s 
constant, the partial pressure, and a constant value of each gas 
particle in jth cluster, respectively. The latter terms are initial-
ized using (2)–(4) below, where constant values of I1, I2, and I3 
are equal to 5×10-2, 100, and 10-2, respectively.

 (2)

 (3)

 (4)

Clustering
The population is split into k clusters owing to the different 
types of gases available in HGSO. Those gas types have differ-
ent values of Henry’s constant, Hj.

Evaluation of Fitness
The objective function considered is used to evaluate ith gas 
particle in jth cluster. The population is ranked after the eval-
uation process using fitness values. The latter helps find the 
best particle of both each cluster (Xi,j) and the entire population 
(Xbest).

Updating Henry’s Coefficient
In each iteration, Henry’s coefficient is updated for jth cluster 
using (5):

 (5)

where maximum iterations and temperature values are repre-
sented by tm and T, respectively.

Updating Solubility
The solubility of ith gas in cluster j is denoted by Si,j. This param-
eter is updated using (6):

 (6)

where K and Pi,j are a constant and the partial pressure, respec-
tively. These are user-defined values and equal to 1 by default.

Updating Position
The position Xi,j in iteration of t+1 is updated using (7):

 (7)

where two different randomly generated values between [0, 
1] are represented by r1 and r2. Controlling the direction of the 
search is denoted by F flag, whereas  β is a user-defined con-
stant and has a default value of 1. γ represents the ability of the 
search agent to interact with the search agents in its cluster; 
the influence of the other search agents on search agent i is de-
noted by α. The best candidate solution in jth cluster is denoted 
by Xj, best, whereas the best solution in the entire population is 
shown by Xbest.
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Escaping from Local Optimum
The HGSO algorithm reinitializes the worst candidate solutions 
(Nw) as an effective strategy to escape from the local minimum. 
The worst candidates are selected using (8) and then reinitial-
ized using (1):

 (8)

where population size is represented by N and c1 and c2 are 
used as constants for providing the ratio of the worst agents in 
the population. The Henry gas solubility principle can briefly be 
summarized as the volume of the gas decreasing with increas-
ing pressure in an equilibrium state. This principle can clearly 
be observed from Figure 1.

Formulating the Problem

Power system model
This study considered a power system consisting of SMIB 
through a transmission line, as shown in Figure 2. The machine 
was assumed to be equipped with a fast exciter. A PSS was in-
tegrated with this system to improve small signal oscillations. 
The fourth-order model of the SMIB power system can be given 
as follows [2, 20]:

 (9)

 (10)

 (11)

 (12)

 (13)

Structure of a Single-Machine Infinite-Bus (SMIB) System 
with a Power System Stabilizer (PSS) Controller
A PSS is a lead-lag compensator that produces a component 
of electric torque to damp generator rotor oscillations by con-
trolling its excitation. The basic block diagram of a speed input 
single-stage PSS, which acts through excitation system, is de-
picted in Figure 3. The transfer function of widely used PSS is 
given as follows [2]:

 (14)

The synchronous speed deviation signal (∆ω) is the input sig-
nal provided to the PSS and the output is the stabilizing signal 
(UPSS). This type of PSS consists of the stabilizer gain, washout 
filter, lead-lag structured phase compensation, and limiter.

Linearized Model of a SMIB System with a PSS Controller
The linearized Heffron–Phillips model of the SMIB system, in-
cluding PSS dynamics, can be represented using the following 
state space equations by neglecting washout filter stage [2, 20]:

 (15)

 (16)

 (17)

 (18)

 (19)

Figure 1. Henry gas solubility principle [14]

Figure 2. SMIB power system with PSS. 
PSS, power system stabilizer; SMIB, single-machine infinite-bus

Figure 3. Block diagram of single-stage lead-lag PSS controller. 
PSS, power system stabilizer
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Here, (19) is added to general equations (15)–(18) of the SMIB 
system because of the installation of a PSS. The system matrix 
(APSS) of this combined model was presented in (20). The system 
matrix without PSS can be easily obtained by excluding the PSS 
output state (UPSS).

 (20)

In this study, the state vector is given as ∆x=[∆δ ∆ω ∆E'q ∆Efd 

∆UPSS]
T. The linearized dynamic model of a SMIB power system 

with PSS controller is represented in Figure 4.

Objective Function and Tuning PSS Parameters Using Hen-
ry Gas Solubility Optimization HGSO
It is feasible to choose the parameters of the PSS to minimize 
the objective function provided in [21]. This performance index 
is based on ITAE and given below:

 (21)

where ∆ω(t) is the rotor speed deviation following a severe dis-
turbance and Tsim is simulation time. The advantage of this in-
dex is the requirement of minimal dynamic plant information. 
Minimizing the ITAE objective function using the parameters 
given in Table 1 is subjected to the following boundaries:

 (22)

Figure 4. Representation of the Heffron–Phillips model with PSS controller. 
PSS, power system stabilizer

Figure 5. Detailed flowchart of the suggested HGSO-based PSS 
controller design. 
HGSO, Henry gas solubility optimization; PSS, power system stabilizer

Table 1. Parameters of HGSO algorithm for PSS design

HGSO Parameter Value

Gas particle (swarm size) 50

Maximum iteration number 30

[I1 I2 I3] [0.05 100 0.01]

[c1  c2 β α K] [0.1 0.2 1 1 1]

Variable number 3 (KPSS, T1 and T2)

Lower bound of [KPSS T1 T2] [0.1 0.01 0.01]

Upper bound of [KPSS T1 T2] [50 1.5 1.5]

Independent run number 20

Simulation time (Tsim) 10 sec

HGSO: Henry gas solubility optimization; PSS: power system 
stabilizer
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The proposed design approach for PSS employed in a SMIB sys-
tem is subjected to large fault conditions while the objective 
function given in (21) is considered. The HGSO algorithm was 
employed to solve this nonlinear optimization problem and 
search for an optimal set of PSS parameters (KPSS, T1 and T2). The 
computational flowchart of the HGSO algorithm is represented 
in Figure 5.

Case Study
In this section, the superiority of the recommended HGSO al-
gorithm for designing a PSS is shown compared with conven-
tional PSS and an optimized PSS controller based on the ASO 
algorithm (see [21] for more details about the problem solu-
tion) via various analyses.

SMIB Test System
The SMIB power system data used to design of the PSS are list-
ed in Table 2 [2]. In addition, the conventional PSS parameters, 

with values of KPSS= 0.5, T1= 0.5 sec, and T2= 0.1 sec, were taken 
from [2]. The stated traditional PSS design procedure is a com-
plicated frequency domain method and thus requires intensive 
calculations; see [2] and [20] for detailed information.

Statistical Analysis via Boxplots
The consistency of the solution achieved by the ASO and HGSO 
algorithms is very important for investigating their perfor-
mance; therefore, nonlinear simulations were conducted 20 
times for both. The values of the ITAE objective function from 
20 simulations for the SMIB power system are given as boxplots 
shown in Figure 6. According to an analysis of the boxplots, 
the value of ITAE achieved by the HGSO algorithm has a more 
consistent spread in a narrower region compared with that 
achieved by the ASO algorithm.

Convergence Rate Analysis
The respective convergence speeds of the ITAE objective func-
tion for best runs of the HGSO and ASO are depicted in Figure 
7. It is clear from the convergence plot that the HGSO algorithm 
reaches the lowest ITAE value with the minimal, i.e., 12, itera-
tions. The final values of the optimized PSS parameters after 
the best runs of ASO and HGSO are given in Table 3.

Eigenvalue Stability Analysis
Eigenvalue analysis was used to investigate the small signal 
stability behavior of a power system by considering different 
characteristic frequencies. In a power system, the stability of 
eigenvalues (to be in the left side of the s−plane) is not the 
only criteria for stability. The desired eigenvalues must also be 
damped as quickly as possible for electromechanical oscilla-
tions. Considering this, eigenvalue analysis was performed to 
verify that the proposed HGSO-based controller improves the 
linear model stability of the system.

Table 2. Parameters of the SMIB system

Transmission line Re=0.0 pu, Xe=0.4 pu

Generator
χd=1.6 pu, χq=1.55 pu, χ'd=0.32 pu, 
T'd0=6.0 sec, H=3.0 sec, D=0

Operating point
P=0.8 pu, Q=0.4 pu, V∞=1.0 pu,
f=60.0 Hz

Exciter KA=50, TA=0.05 sec

Heffron–Phillips model 
constants 

K1=1.1775, K2=1.0783, K3=0.3600,
K4=1.3803, K5=-0.0054, K6=0.4603

SMIB: single-machine infinite-bus

Figure 6. Comparative boxplot analysis results for ASO and HGSO 
algorithms. 
ASO, atom search optimization; HGSO, Henry gas solubility optimization

Figure 7. Convergence curves for ASO and HGSO algorithms. 
ASO, atom search optimization; HGSO, Henry gas solubility opti-
mization
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The eigenvalues and electromechanical swing modes of 
the SMIB system were computed in MATLAB using the 
system matrix presented in (20). The system matrices 
without PSS and with conventional PSS [2], ASO-based 
PSS, and HGSO-based PSS are given in (23)–(26), respec-
tively.

 (23)

 (24)

 (25)

 (26)

All eigenvalues and corresponding damping ratios of the lin-
earized SMIB system model without a stabilizer and with PSS 
controllers optimized by ASO and HGSO algorithms are giv-
en in Table 4. This table also includes the system eigenvalues 
and damping ratios for conventional PSS for comparison, and 
shows that the system is insufficiently damped when PSS is not 
utilized. Compared with conventional PSS and ASO-based PSS 
designs, the eigenvalues of the proposed HGSO-based PSS are 
farther to the left of the s−plane and there has a better min-
imum damping ratio. Therefore, an HGSO-based PSS greatly 
enhances the small signal stability of the SMIB system and 
improves the damping characteristics of electromechanical 
modes.

Stability Analysis in Nonlinear Model
Mathematical models of the differential and algebraic equa-
tions of the SMIB power system were created using various 
Simulink blocks. The developed Simulink model was used for 
nonlinear simulations. In a MATLAB/Simulink environment, 
time domain simulations were performed using the ode4 (Run-
ge–Kutta) method with an integration step of ∆t=0.005 sec for 
numerical integration of differential equations. This section 
provided the stability analysis, which was carried out using the 
nonlinear model, to clearly demonstrate the quality of the pro-
posed HGSO-based PSS controller.

A three-phase fault was applied at the generator terminal 
busbar at t=2s and cleared after three cycles (0.05 s). The 
original system was restored on fault clearance. The system 
rotor angle (δ), speed deviation (∆ω), and electrical power 
(Pe) responses are shown in Figures 8, 9, and 10, respectively. 
It is obvious from these figures that the power system os-
cillations are inadequately damped, although the system is 
stable, without any controller and with conventional PSS. 
The stability of the SMIB system was maintained and the os-
cillations of the power system were effectively suppressed 
with the application of an ASO-based PSS. In addition, unlike 
conventional and ASO-based PSSs, the oscillations in the 
δ, ∆ω, and Pe were prevented with the employment of the 
proposed HGSO-based PSS controller. Moreover, it provided 
good damping characteristics to low-frequency oscillations 
by quickly stabilizing the system.

Table 3. PSS controller parameters obtained

Parameters ASO HGSO

KPSS 45.9602 20.9794

T1 0.4781 0.4512

T2 0.0146 0.0100

ASO: atom search optimization; HGSO: Henry gas solubility 
optimization; PSS: power system stabilizer

Table 4. System eigenvalues and damping ratios

Damping Controller 
Type

Eigenvalue 
(λ=σ±jω)

Damping Ratio
 

No stabilizer  
(without controller)

-14.5667 1.0000

-5.7345 1.0000

-0.0809+8.5518i 0.0095

-0.0809-8.5518i 0.0095

Conventional PSS [2]

-0.1739+8.6660i 0.0201

-0.1739-8.6660i 0.0201

-15.5041 1.0000

-6.3466 1.0000

-8.2644 1.0000

ASO-based PSS

-77.9762 1.0000

-3.6430+25.6353i 0.1407

-3.6430-25.6353i 0.1407

-1.8470+2.1432i 0.6528

-1.8470-2.1432i 0.6528

HGSO-based PSS

-103.1951 1.0000

-5.9238+17.5419i 0.3199

-5.9238-17.5419i 0.3199

-2.7101+3.1504i 0.6521

-2.7101-3.1504i 0.6521

ASO: atom search optimization; HGSO: Henry gas solubility 
optimization; PSS: power system stabilizer



256

Electrica 2021; 21(2): 250-258
Ekinci et al. HGSO Algorithm for Optimal PSS Design

Conclusion

A novel metaheuristic optimization method, inspired by the 
behavior of gas governed by Henry’s law, has been suggest-
ed for optimal tuning of PSS parameters KPSS, T1, and T2. For the 
design problem, an ITAE objective function was minimized us-
ing an HGSO algorithm to improve the dynamic performance 
of the power system. The performance of the proposed PSS 

controller was tested on a SMIB system and compared with 
ASO-based and conventional PSS controllers. Analysis of the 
eigenvalues obtained and results of nonlinear simulations 
demonstrated that the HGSO-tuned PSS controller was capa-
ble of significant suppression of electromechanical oscillations. 
In addition, the HGSO algorithm was shown to provide good 
statistical performance and high convergence speed for a PSS 
design employed in a SMIB system.
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