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ABSTRACT

In this paper, a combination of a robust backstepping controller and an integral action for a magnetic levitation system is presented. The mathematical model of the 
magnetic levitation system containing uncertainties and high-order nonlinear terms has quite a complex structure. The principal aim of this study is to drive the ball 
position to the desired reference in the presence of a complex structure, parametric uncertainties, and time-varying disturbances. The designed nonlinear controller is 
based on the robust backstepping technique, in which the robustness is provided via nonlinear damping terms. The boundedness of the tracking error is guaranteed 
with this method. In order to eliminate steady-state position error caused by the uncertainties and unmodeled dynamics, an integral term is added to the controller 
structure. After designing the proposed nonlinear controller, the overall closed-loop stability is accordingly analyzed with a Lyapunov-like function. Simulation studies 
are performed and the results are presented to test the success and the performance of the proposed controller.
Index Terms—Integral action-based control, magnetic levitation system, nonlinear damping, robust backstepping control.
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I. INTRODUCTION

Magnetic levitation systems can be defined as systems in which a metal object is moved under 
the effect of a magnetic field. In these systems, the mechanical contact between moving and 
fixed parts is removed. Nowadays, major examples demonstrating the application of magnetic 
levitation systems can be cited as the high-speed trains in Japan and Germany [1], magnetic 
bearings [2], vibration-isolation systems [3], suspension in air tunnels [4], and planar position 
systems [5]. Besides these practical applications, in order to conduct academic studies experi-
mentally in a laboratory, a magnetic ball-suspension system has been adopted. In such a system, 
a ball can be kept suspended by generating the magnetic field through a coil, and the position 
of the ball can be adjusted by changing the current passing through the coil. The main purpose 
in this system is to keep the ball stable at a certain position by adjusting the intensity of the mag-
netic field or to force the ball to track a predefined trajectory.

The magnetic suspension system has a complex behavior due to the highly nonlinear, structured, 
and unstructured uncertainties in its dynamics, and therefore it is very difficult to obtain the 
exact model of the system. Another difficulty encountered in the control of magnetic suspension 
systems is that the force created by the coil changes with the position of the suspended ball and 
other factors. The fact that the mentioned problem contains uncertainties together with high-
order nonlinear terms makes the control problem even more difficult. There are some studies in 
the literature to obtain an approximate mathematical model of these nonlinear functions exist-
ing in the magnetic ball-suspension system [5-8].

The control of the magnetic ball-suspension system has attracted much attention from research-
ers, mainly because of the aforementioned challenges. In order to ensure stability in case of 
model uncertainties, many different controller structures have been proposed for magnetic 
ball-suspension systems and tested in the laboratory environment. In [9], a fuzzy logic-based 
PID controller is proposed for the nonlinear mathematical model of the magnetic suspension 
system. A model-free adaptive design approach based on an adaptive-fuzzy procedure versus 
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a nonlinear H∞  controller has been successfully presented to keep 
the ball position error near zero [10]. The position of the ball is con-
trolled by combining a neural network for the estimation of electro-
magnetic parameters with a nonlinear method [11]. For magnetic 
ball-suspension systems, robust control structures that can deal 
with parametric uncertainties depending on the mathematical 
model have been designed with nonlinear damping [12] and inter-
nal model-based design [13] techniques. The optimal sliding-mode 
control structure has been offered in [14] to achieve robust stability 
as a result of the feedback linearization procedure. Adaptive control 
[15, 16] and adaptive PID [17] structures realized by designing adap-
tation rules for uncertain parameters in the system model have also 
been found in the literature for magnetic ball-suspension systems. 
In addition to these control structures, a nonlinear predictive con-
trol model has been applied to the magnetic ball-suspension system 
[18]. On the other hand, various structures have been presented in 
order to predict or observe both disturbance effects in the system 
and unmeasured state variables [19-22].

The nonlinear backstepping method has been preferred in many 
applications to control the magnetic suspension system, due to its 
consistency with the model structure of the system. The main reason 
for this is the third-order nonlinear dynamics of the system being 
in the strict-feedback form. A backstepping controller application 
ignoring the current dynamics is presented in [23]. In the study 
given by [6], the backstepping method is applied to move the ball to 
a constant reference. The backstepping control approach is used in 
combination with other methods in order to deal with model uncer-
tainties and external disturbances. Adaptive backstepping control 
for model uncertainties [16], and a robust backstepping control 
algorithm modified to a magnetic ball suspension system are intro-
duced to overcome the aforementioned problems [24]. In addition, 
auxiliary control rules for the stability analysis of the subsystems in a 
magnetic ball suspension system have been offered in the proposed 
algorithm, and the derivatives of these control rules have been 
obtained with the help of first-order observers in [24]. However, 
unmatched disturbances may lead to instability in the magnetic 
levitation system with the proposed controller in [24]. Moreover, to 
reduce the effect of parametric uncertainties, a backstepping-based 
nonlinear damping controller with a PI controller has been proposed 
to eliminate position error [25]. However, the controller is designed 
for a current-controlled magnetic suspension system utilizing a sec-
ond-order nonlinear model. On the other hand, a voltage-controlled 
magnetic levitation system is more challenging in terms of controller 
design due to the fact that the system order is three. The addition of 
a cognitive structure to the controller to ensure the robustification 
of parametric uncertainties [26], and an adaptive backstepping con-
troller design with k-filter robustness modification [27] have been 
presented for the robust control problem as well. In [28], a robust 
nonlinear control strategy based on the backstepping approach has 
been investigated for the control problem, containing high nonlin-
earities. The robust backstepping control for third-order magnetic 
suspension system dynamics has been proposed in [29], without 
considering the elimination of steady-state error caused by constant 
uncertain parameters in the design procedure.

To the best of the authors’ knowledge, the robust control problem has 
not been considered so far in the backstepping controller design for 

the complete model of the magnetic suspension system containing 
parametric uncertainties and time-varying disturbances. Hence, this 
study proposes a robust backstepping controller with integral action to 
control the ball position in a magnetic ball-suspension system along a 
reachable desired position, in the presence of parametric uncertainties 
and external disturbances. In order to achieve this, the system model is 
initially simplified by means of a nonlinear transformation. Then, a con-
troller is designed based on a robust backstepping approach, formed 
by the integral action and the nonlinear damping term, to provide the 
set point regulation. Almost all of the model constants depending on 
the physical structure of the system and the gravitational acceleration 
are considered uncertain. The unknown constant parameters and the 
external disturbances in the control signal have been bounded by a 
combination of nonlinear damping and backstepping techniques to 
meet the stability requirements. In order to eliminate the steady-state 
error caused by the uncertain parameters, the integral action is con-
tained in the controller and the stability analysis is performed accord-
ingly. Therefore, if the error bounded by the nonlinear damping term is 
a nonzero constant due to the uncertainties, it can be driven to zero by 
the integral action. The main contributions of this study are:

• Solving the control problem for a magnetic levitation system 
by implementing the backstepping technique with an integral 
action, providing zero steady-state error in case of constant dis-
turbance signal, and

• Revelation of the robustness properties through convergence 
analysis by means of nonlinear damping terms added in the 
designed controller.

In conclusion, this paper presents a robust backstepping control-
ler design for the control of the ball position in a magnetic suspen-
sion system. The boundedness of the trajectories is provided in the 
closed-loop system. Moreover, asymptotic stability can be achieved 
under certain conditions by means of the integral action included in 
the synthesis part. The proposed controller has been examined via 
numerical simulations under different conditions in order to test its 
robustness and performance.

The rest of the paper is organized as follows. In Section II, the 
dynamic model of the magnetic ball-suspension system is given by 
introducing structured and unstructured uncertainties. After the 
robust controller design with nonlinear damping terms based on 
integral backstepping is devised, the stability of the overall closed-
loop system dynamics is shown in the sense of Lyapunov-like func-
tion. Then, in following section, the results of the numerical works 
are presented to show the performance of the proposed controller. 
Finally, the conclusions are highlighted.

II. MAGNETIC BALL-SUSPENSION SYSTEM

A magnetic field is created by passing a current through a coil in a 
magnetic ball-suspension system. In this way, a metal ball can be 
suspended by the generated magnetic field, and the position of the 
ball can be adjusted with the intensity of the magnetic force. The 
components of the magnetic ball- suspension system are given in 
Fig. 1. The dynamic equations for this system can be given as follows:

�y v y � ��  (1)
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where y, v, i are the distance between the ball and the coil, the ball’s 
velocity on the vertical axis, and the coil current, respectively. R is the 
coil resistance, L is the coil inductance, m is the ball’s mass, g is the 
gravitational acceleration, Fem is the electromagnetic force generated 
by the coil, α is the bounded unknown constant, d(t) is the time-vary-
ing disturbance term, and u is the voltage input to the coil. Note that, 
αy contained in (1) can be considered as the position-dependent error 
in velocity measurement, and the disturbance has a direct effect on 
the acceleration of the ball corresponding to the magnetic force.

The magnetic force generated by the current through the coil can 
vary depending on the position of the ball, and this change is not lin-
ear. There are different approaches in the literature for obtaining the 
magnetic force expression [5-8]. In this paper, the force generated by 
the coil is considered as 

F
ai

b y
em �

�� �

2

2
 (4)

where a and b denote the positive system constants depending on 
coil specifications. Details about the derivation of such a force model 
can be found in [6].

Defining x1 = y, x2 = v, and x3 = i2, the dynamic model given by (1)–
(3) can be transformed to

�x x x1 2 1 � ��  (5)
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m
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, d t
d t
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( )

( )
� 2 , θ3 = R, �4 2

�
L

. Here, dθ(t) is 

the bounded disturbance term and it satisfies

| ( ) |d t d� ��  (9)

where dθ  is a positive upper bound.

The main purpose of this study is to regulate the position of the ball 
at a reference point despite the uncertain parameters θi,i = {1, 2, 3, 4} 
and the external disturbance dθ(t).

III. CONTROLLER DESIGN AND STABILITY ANALYSIS

In this section, a robust backstepping controller design procedure 
is presented. The structure of the controller is convenient for the 
control of the ball position in a magnetic levitation system, but it 
is not able to eliminate the steady-state error caused by the para-
metric uncertainties and/or external disturbances. For this rea-
son, the proposed controller is supported by the integral action 
in order to guarantee high-precision and high-performance posi-
tion control.

Let the desired set point for the motion of the ball be x1d. Then, 
the desired trajectory for the velocity is given by x xd d2 1 0= =� . 
Accordingly, the desired reference values and their time derivatives 
are zero except for x1d through all controller design steps. Error sig-
nals for the position and velocity of the ball on the vertical axis can 
be generated using the desired trajectory signals as follows:

e x x d1 1 1� �    (10)

e x2 2=  .  (11)

Utilizing the system dynamics (5)–(7) and (10)–(11), the error dynam-
ics can be obtained as

�e e x1 2 1� ��  (12)

�e x x
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2
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� �4 3 3 3 3�x x x u� � � .  (14)

Fig. 1. Magnetic levitation system.
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Let the error integral term be introduced by
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with k1 being a positive constant satisfying k1 > α + 1. Employing 
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the time derivative of (16) can be obtained as 
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And the error dynamics given by (12) can be rearranged as follows

�e k e k e z1 0 0 1 1 2� � � � �( ) .�  (21)

Note that V1 in (16) is positive definite in terms of e0 and e1, and its 
time derivative is negative definite if z2 = 0 and k1 – α – 1 < 0. Thus, 
e0→0 and e1→0 are provided as t→∞. Utilizing �e2  and �φ2 , the deriv-
ative of (19) with respect to time can be organized as
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and θ5 = αθ2.

x3 signal will be used in the next step of the backstepping control-
ler design. However, there are unknown constants in z2 dynamics. 
Here, the system uncertainties do not directly match the control sig-
nal. In order to overcome these uncertainties, the unknown constant 
parameters in the control signal will be bounded by combining the 
nonlinear damping and backstepping control technique. The second 
auxiliary function, V2, can be given by

V V z2 1 2 2
21

2
� � � ,  (24)

and the time derivative of this function can be obtained as
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where k d2 1 2 5, , , , ,� � � � �� � �� , one can reorganize (25) to be
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with �
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� � k
x d

0
1 . For the last step of the design procedure, the 

derivative of the (27) can be formed as 
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where hθ  is a positive constant. After these mathematical manipula-
tions, the closed-loop dynamics turns out to be

�e e0 1=  (36)
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The candidate Lyapunov function to construct the control signal 
making the closed-loop system globally bounded can be introduced 
as 
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This expression can be reorganized by plugging in ϕ3 and  
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Finally, the control signal can be formed as 
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where k3�
��  and ψ are a design terms to be introduced. Employing 

this control signal, the derivative of the candidate Lyapunov func-
tion turns into
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Moreover, ψ can be assigned as
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with positive constants κi,i ∈ {3, 4, 6, 7, 8, h}. Adding and subtracting 
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, then �V < 0  is satisfied. Thus, con-

sidering (40) and (47), e0, e1, z2, and z3 are guaranteed to be globally 
ultimately bounded [30]. Therefore, e2 and x3 are globally ultimately 
bounded as well, according to (19) and (27). The ball position error is ulti-
mately bounded, and the ultimate bound can be tuned by changing the 
parameters (κi,i = {1, …, 9, α, d, h}) and the controller gains (κj,j ∈ {1, 2, 3}). 
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Also, in order to eliminate the steady-state error of the ball position, the 
integral action, which is well-known in control theory, is added from the 
beginning to the conventional robust backstepping controller based on 
nonlinear damping terms. The integral action guarantees convergence 
of e1 to zero in the presence of time invariant steady-state error.

IV. SIMULATION RESULTS

In order to test the performance and robustness of the pre-
sented controller, numerical simulations have been carried out. 
The physical parameters of the magnetic ball-suspension system 
used in the simulations are presented in Table. In addition, the 
input signal (u) is allowed to take a value in the interval of 0–30 
V. The initial values of the state variables have been assigned as 

x x x T T
1 2 3 0 02 0 0 001�� �� � �� ��. . . Controller gains have been 

taken as k1 = 50, k2 = 2000, k3 = 500, κi = 0.1, i = {1, …, 8}, κ9 = 0.5 × 10−3, 

κα = 0.01, κd = 0.01, κh = 0.01, and integral gain has been assigned as 
ki = 0.01. The solver step time for the model has been set to 1 µs and 
the controller sampling time to 100 µs.

In the numerical simulations, the bounded unknown constant 
(α) has been set to 0.01. The simulation results are presented for 
two different disturbance signals. External disturbance is added 
as d(t) = 10 and d(t) = 10 sin(2πt), respectively. Note that the distur-
bance signal, which is caused by external unstructured dynamics, is 
a bounded function but not an exponentially decaying disturbance 
signal in the second case. Note also that the disturbance signal has a 
direct effect on the ball acceleration, hence it can be considered as a 
disturbance on the force applied to the ball.

A square wave signal has been used for the desired ball position 
in the numerical simulations. The reference input has initially been 
assigned as x1d = 0.02 m, then changed between 0.02 m and 0.025 m 
to better analyze the step response. The change of the ball position 
and velocity, and the change of coil current and input voltage are 
presented in Fig. 2 and 3 for different disturbance signals. Since the 
coil current and accordingly the magnetic field force are very close 
to zero at the beginning of the simulation, it should be noticed that 
the ball moves in the direction of gravity. On the other hand, the 
ball position approaches the desired value rapidly with the genera-
tion of the magnetic force. When the results are examined, it can be 
observed that the setting time is approximately 0.25 s, and the per-
centage overshoot is approximately 20%.

As a result, the control of the ball position is successfully achieved 
for set-point reference. The proposed robust backstepping control-
ler with integral action drives the error to zero in the presence of 

TABLE. PHYSICAL PARAMETERS OF THE DYNAMIC MODEL

Model Parameter Value

m 0.005 kg

R 22 Ω

L 0.5 H

g 9.81 m/s2

a 0.003

b 0.041

Fig. 2. Response of ball position and velocity, coil current, and voltage for fixed-point reference.
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constant external disturbance signal and parametric uncertainties 
(Fig. 2). In case of the time-varying disturbance signal, the proposed 
controller drives the position error to almost zero (Fig. 3). In addi-
tion, the proposed controller neither has any information about 
uncertain parameters and disturbance, nor their bounded values. 
Consequently, the effectiveness of the proposed controller has been 
shown by means of a numerical simulation and by the theoretical 
analysis provided in the design step.

V. CONCLUSIONS

In this study, a robust backstepping controller with integral action has 
been designed and presented to ensure that the ball position is driven 
to a reference in a magnetic ball- suspension system. After obtaining 
the error dynamics for the complete model of a magnetic levitation 
system and designing the non-linear damping-based robust back-
stepping controller with integral action, the boundedness of the error 
signal in the closed-loop dynamics with the proposed controller struc-
ture has been shown in the sense of a Lyapunov-like analysis. With 
the inclusion of the integral action in the robust backstepping control 
methodology, the convergence of the position error of the ball in a 
bounded region has been guaranteed and the analysis has been car-
ried out accordingly. Subsequently, the designed controller has been 
implemented via a numerical simulation run for a magnetic levitation 
system and satisfactory results have been obtained.
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