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ABSTRACT

This paper proposes a novel sine–cosine and Nelder–Mead (SCANM) algorithm which hybridizes the sine–cosine algorithm (SCA) and Nelder–Mead (NM) local search 
method. The original version of SCA is prone to early convergence at the local minimum. The purpose of the SCANM algorithm is to overcome this issue. Thus, it aims 
to overcome this issue with the employment of the NM method. The SCANM algorithm was firstly compared with the SCA algorithm through 23 well-known test 
functions. The statistical assessment confirmed the better performance of the proposed algorithm. The comparative convergence profiles further demonstrated the 
significant performance improvement of the proposed SCANM algorithm. Besides, a non-parametric test was performed, and the results that showed the ability of the 
proposed approach were not by coincidence. A popular and well-performed metaheuristic algorithm known as grey wolf optimization was also used along with the 
recent and promising two other algorithms (Archimedes optimization and Harris hawks optimization) to comparatively demonstrate the performance of the SCANM 
algorithm against well-known classical benchmark functions and CEC 2017 test suite. The comparative assessment showed that the SCANM algorithm has promising 
performance for optimization problems. The non-parametric test further verified the better capability of the proposed SCANM algorithm for optimization problems.
Index Terms—Sine–cosine algorithm, Nelder–Mead simplex search method, hybrid algorithm, benchmark functions
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I. INTRODUCTION

The optimization process follows a path that allows a problem to reach a global optimum [1, 2]  
and such a process has so far been used to solve real-world engineering, finance, and scien-
tific problems which are expressed by mathematical models [3–5]. Optimization techniques can 
be classified as derivative and non-derivative approaches depending on the derivatives of the 
objective function which are required to calculate the optimum value. The metaheuristic algo-
rithms are among the non-derivative approaches and have recently been used as the most effec-
tive tools for optimization problems. Such algorithms operate based on imitating individuals or 
swarms of particles with swarm intelligence along with theorems and phenomena based on sci-
entific laws with certain mathematical modeling [3].

In general, metaheuristic approaches initiate the optimization process by generating a random 
set of candidate solutions and developing them as candidate solutions for a particular problem 
[6]. Despite the superior performance compared to computational optimization approaches, it 
is not always feasible to successfully solve all kinds of problems with metaheuristic algorithms. 
The latter case is well explained by the “no free lunch theorem” [7] which states that one can-
not be sure that the success of an algorithm in solving a given set of problems can solve every 
optimization problem of different nature and type. Such a reality allows researchers to propose 
new optimization techniques or improve existing algorithms to solve a wider range of problems. 

Since metaheuristic approaches have stochastic natures, it is feasible to encounter inefficient 
solutions for complex problems due to local minimum stagnation. Therefore, a good balance 
between global and local search stages of metaheuristic algorithms is crucial as such a balance 
makes them capable of solving different types of problems effectively [8]. To achieve an improved 
balance, a hybridization technique can be employed [9]. Hybridization has three important 
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advantages such as solving large problems that metaheuristic algo-
rithms fail to achieve, faster performance in problem-solving, and 
providing robust algorithms [10].

The sine–cosine algorithm (SCA) was shown to be an effective meta-
heuristic approach in solving optimization problems [11]. The SCA 
has the advantages of convergence speed, powerful neighborhood 
search capabilities, and a robust global search that allows the algo-
rithm to solve different problems effectively. Nevertheless, certain 
weaknesses can also be observed in SCA. For example, a random 
number ranging from 0 to 2 may make some regions challenging for 
SCA during the search for a better solution around the current solu-
tion [12–14]. In that sense, the SCA can be hybridized with Nelder–
Mead (NM) local search algorithm as the latter one has the ability to 
produce a more optimal solution by improving the global solution 
point in the exploitation stage [15]. So far, there have been different 
applications adopting hybrid algorithms that use NM simplex search 
and some of the recent ones can be found in refs [16–22]. Therefore, 
this study proposes an SCA with NM (SCANM) hybrid algorithm in 
order to accelerate the convergence to the optimal solution by mov-
ing the current solution toward the best solution. In this way, it is 
feasible to achieve better results compared to similar optimization 
algorithms.

To assess the performance of the proposed SCANM algorithm, 
classical unimodal and multimodal benchmark functions with 
different dimensions [23, 24] were employed. The classical bench-
mark-related performance assessment has shown that the per-
formance of the SCA is improved significantly by operating the 

NM method with the specific configuration which confirms the 
superiority of the proposed SCANM algorithm. Besides, Wilcoxon’s 
signed-rank test further verified the overall superiority of the 
proposed approach over the original form of SCA. In addition to 
comparative analysis with the original form of SCA, the proposed 
SCANM was compared with grey wolf optimization (GWO) [25], 
Archimedes optimization algorithm (AOA) [26], and Harris hawks 
optimization (HHO) [27] algorithms in order to further demon-
strate the greater performance characteristics of the proposed 
algorithm against the most popular and recently proposed prom-
ising metaheuristic algorithms. The latter comparative assess-
ments were performed against unimodal fixed-dimension and 
multimodal fixed-dimension along with shifted, rotated, hybrid, 
and composite benchmark functions from CEC 2017 test suite. 
The evaluated convergence curves and boxplot figures have 
confirmed that the proposed SCANM algorithm has better per-
formance characteristics compared to other available and well-
performing metaheuristic algorithms. Similar to the assessment 
carried out against the SCA algorithm, a non-parametric test was 
also performed against the layer-listed algorithms which further 
verified the greater performance of the SCANM.

II. SCA, NM SIMPLEX METHOD, AND SCANM HYBRID 
ALGORITHM

A. Sine−Cosine Algorithm
The optimization algorithm of SCA mimics the mathematical func-
tions of sine and cosine for solving the problems [11]. In SCA, a can-
didate set of solutions is generated and then updated according to 

Fig. 1. Conceptual model of the effects of sine and cosine functions in the range [−2, 2].

Fig. 2. Visual description of the NM simplex method. NM, Nelder–Mead algorithm.
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Fig. 3. Flowchart of the SCANM algorithm. SCANM, sine–cosine and Nelder–Mead algorithm.
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the sine and cosine functions by fluctuating outward or toward the 
target to create a new swarm as shown in Eq. (1):
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where t represents the current iteration and i stands for the dimen-
sion at t. In the respective equation, P stands for the destination 
direction. The parameters r1, r2, r3 and r4 determine the direction of 
movement of the next position which may be toward inside or out-
side of the area between the solution and the target. Fig. 1 illustrates 
the conceptual model that demonstrates the effects of the tine and 
cosine functions.

B. Nelder–Mead Simplex Method
This is a direct search method developed by Nelder and Mead [15] 
in order to solve minimization problems. In this algorithm, vertices 
of x1, x2, …, xn+1 are generated and the respective fitness function 
values of fit(x1), fit(x2), …, fit(xn+1) are sorted in ascending order. In 

this way, the optimal vertex of x1 is identified. Four different opera-
tions (reflection, expansion, contraction, and shrinkage) are used to 
replace the worst vertex (xn+1). The reflection point of xr is identified  
as in Eq. (2):

x x x xr cnt cnt n� � �� ��� 1  (2)

where ρ and xcnt are, respectively, the reflection coefficient and the 
centroid (excluding the xn+1 vertex). The xr is then expanded across 
the search space as defined in Eq. (3):

x x x xe cnt r cnt� � �� ��  (3)

where γ is the expansion coefficient and xe is the expansion point. 
For xc (contraction) and xs (shrinkage), the following equations are 
respectively used:

x x x xc cnt n cnt� � �� ��� 1  (4)

x x x x i ns i� � �� � � � �1 1 2 3 1� , , , ,  (5)

TABLE I. ADOPTED CLASSICAL BENCHMARK FUNCTIONS (CF)

Function Number Name Range Dimension (D) Global Minima (fmin)

CF1 Sphere [−100, 100] 10 0

CF2 Schwefel 2.22 [−10, 10] 10 0

CF3 Schwefel 1.2 [−100, 100] 10 0

CF4 Schwefel 2.21 [−100, 100] 10 0

CF5 Rosenbrock [−30, 30] 10 0

CF6 Step [−100, 100] 10 0

CF7 Quartic [−1.28, 1.28] 10 0

CF8 Schwefel [−500, 500] 10 −418.9829*D

CF9 Rastrigin [−5.12, 5.12] 10 0

CF10 Ackley [−32, 32] 10 0

CF11 Griewank [−600, 600] 10 0

CF12 Penalized [−50, 50] 10 0

CF13 Penalized 2 [−50, 50] 10 0

CF14 Foxholes [−65.536, 65.536] 2 0.998004

CF15 Kowalik [−5, 5] 4 0.0003075

CF16 Six-hump [−5, 5] 2 −1.0316285

CF17 Camel back branin [−5, 0], [10, 15] 2 0.398

CF18 Goldstein-price [−2, 2] 2 3

CF19 Hartman 3 [0, 1] 3 −3.862782

CF20 Hartman 6 [0, 1] 6 -3.32236

CF21 Shekel5 [0, 10] 4 −10.1532

CF22 Shekel7 [0, 10] 4 −10.4029

CF23 Shekel10 [0, 10] 4 −10.5364
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Here, δ is the shrinkage coefficient whereas β is the contraction. 
Fig.  2 illustrates the operation of NM from a geometrical point of 
view.

C. Proposed SCANM Hybrid Algorithm
As mentioned earlier, SCA may end up with poor convergence for 
complex optimization tasks which causes unsatisfactory results. 
Considering this fact, the proposed algorithm aims to increase 
the exploitation capability so that it can perform satisfactorily for 

complex optimization tasks. In this regard, the hybrid SCANM algo-
rithm proposed by this study uses SCA to explore the search space 
whereas employs NM to carry out the local search. In the proposed 
SCANM algorithm, the search process starts with the SCA, and this is 
followed by passing the best solution of the current iteration to the 
NM method in order to improve the solution quality. After every 50 
iterations of the SCA, the NM method operates twice as much as the 
number of SCA meaning that for 500 iterations of SCA, NM processes 
1000 iterations. The detailed flowchart of the proposed SCANM algo-
rithm is shown in Fig. 3.

III. EXPERIMENTAL RESULTS

This section provides the details of the employed classical benchmark 
functions and the test functions chosen from CEC 2017 benchmark 
suite. The performance of the proposed hybrid SCANM algorithm 

TABLE II. COMPARISON OF SCA AND SCANM AGAINST UNIMODAL 
CLASSICAL FUNCTIONS

Function Number Metrics SCA SCANM

CF1 Mean 2.2557E−11 8.2358E−28

Best 2.3119E−17 5.1386E−40

Worst 5.7183E−10 2.4690E−26

Std. Dev. 1.0411E−10 4.5076E−27

CF2 Mean 2.1463E−09 8.5287E−15

Best 3.0693E−14 5.5911E−19

Worst 2.1850E−08 1.0971E−13

Std. Dev. 4.5415E−09 2.2759E−14

CF3 Mean 0.0065 3.0360E−20

Best 1.3595E−06 2.0467E−30

Worst 0.0779 4.5153E−19

Std. Dev. 0.0174 1.0012E−19

CF4 Mean 4.4861E−04 9.1492E−03

Best 1.7932E−06 1.1349E−06

Worst 0.0019 0.0681

Std. Dev. 4.9629E−04 0.014

CF5 Mean 7.39858 1.3288

Best 6.3123 0

Worst 8.1216 3.9866

Std. Dev. 0.421 1.9114

CF6 Mean 0.4341 3.7430E−31

Best 0.1378 3.0815E−32

Worst 0.8618 1.1925E−30

Std. Dev. 0.1488 2.5374E−31

CF7 Mean 0.0038 0.5015

Best 3.7334E−05 0.0567

Worst 0.0123 0.9106

Std. Dev. 0.0031 0.2937

SCA, sine–cosine algorithm; SCANM, sine–cosine and Nelder–Mead algorithm.

TABLE III. COMPARISON OF SCA AND SCANM AGAINST MULTIMODAL 
CLASSICAL FUNCTIONS

Function number Metrics SCA SCANM

CF8 Mean −2.14E+03 −2.50E+03

Best value −2.55E+03 -2.94E+03

Worst value −1.83E+03 −2.01E+03

Std. Dev. 152.6469 281.4528

CF9 Mean 2.5482 7.3295

Best value 0 0

Worst value 14.4277 32.8334

Std. Dev. 4.4909 9.3096

CF10 Mean 6.8069E−05 3.0040E−12

Best value 9.2668E−10 7.9936E−15

Worst value 9.3053E−04 6.7765E−11

Std. Dev. 2.2722E−04 1.2289E−11

CF11 Mean 0.0628 0.2921

Best value 4.7629E−14 0

Worst value 0.754 0.8101

Std. Dev. 0.1556 0.2575

CF12 Mean 0.0959 0.8583

Best value 0.0306 4.7116E−32

Worst value 0.1858 17.9486

Std. Dev. 0.0457 3.5277

CF13 Mean 0.3276 0.1007

Best value 0.1836 1.0224E−31

Worst value 0.513 0.4364

Std. Dev. 0.0858 0.0925

SCA, sine–cosine algorithm; SCANM, sine–cosine and Nelder–Mead algorithm.
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TABLE IV. COMPARISON OF SCA AND SCANM AGAINST SMALL SIZE CLASSICAL FUNCTIONS

Function number Metrics SCA SCANM

CF14 Mean 1.5277 1.5781

Best value 0.998 0.998

Worst value 2.9821 2.9821

Std. Dev. 0.892 0.8822

CF15 Mean 0.001 3.7264E−04

Best value 3.6324E−04 3.0749E−04

Worst value 0.0016 0.0023

Std. Dev. 3.5609E−04 3.5687E−04

CF16 Mean −1.0316 −1.0316

Best value −1.0316 −1.0316

Worst value −1.0314 −1.0316

Std. Dev. 4.3258E−05 1.8278E−15

CF17 Mean 0.4008 0.3979

Best value 0.3979 0.3979

Worst value 0.4227 0.3979

Std. Dev. 0.0047 6.1487E−16

CF18 Mean 3.0001 3

Best value 3 3

Worst value 3.0005 3

Std. Dev. 1.1150E−04 9.9827E−15

CF19 Mean −3.8534 −3.8628

Best value −.8604 −3.8628

Worst value −3.8483 −3.8628

Std. Dev. 0.0022 1.3550E−15

CF20 Mean −2.8724 −2.8724

Best value −3.2075 −3.322

Worst value −1.5709 −3.2031

Std.Dev. 0.377 0.057

CF21 Mean −2.1905 −5.7654

Best value −4.8951 −10.1532

Worst value −0.4965 −2.6305

Std.Dev. 1.7599 2.3787

CF22 Mean −3.4178 −5.6041

Best value −5.4807 −10.4029

Worst value −0.9054 −2.7519

Std. Dev. 1.5206 2.5648

CF23 Mean −3.5113 −7.0768

Best value −6.7781 −10.5364

Worst value −0.5557 −2.4217

Std. Dev. 1.8857 2.9327

SCA, sine–cosine algorithm; SCANM, sine–cosine and Nelder–Mead algorithm.
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was evaluated comparatively against those benchmark functions in 
terms of statistical measures. In this way, a better balance between 
the explorative and exploitative phases of the proposed SCANM 
algorithm is demonstrated. Besides, the Wilcoxon signed-rank non-
parametric test is also discussed in this section. For the purpose of 
the visual observation, the convergence curves and the boxplot fig-
ures are also provided and discussed. All algorithms adopted in this 
study were run 30 times with 500 iterations and population size of 30 
for all functions using the MATLAB 2016 software package.

A. The Performance of SCANM Against SCA Using Classical 
Benchmark Functions
In this study, the classical benchmark functions listed in Table I were 
adopted in order to observe the performance of the proposed hybrid 
SCANM algorithm against the original form of SCA. The benchmark 
functions of CF1–CF7 are unimodal functions that have only one 
global solution and no local solution. Thus, they are used to examine 
the algorithms in terms of convergence rate. On the other hand, the 
benchmark functions from CF8 to CF13 are multimodal functions 

that have local minima. These functions can be used to assess the 
algorithm’s ability in terms of escaping the weak local optimum and 
achieving a near-global optimum. Finally, the benchmark functions 
of CF14–CF23 are of small sizes which also have several local mini-
mums. The latter appears to be relatively simple compared to multi-
modal functions (CF8–CF13).

The benchmark functions given in Table II were solved by the origi-
nal SCA and the proposed SCANM algorithms. Then the results 
were compared in terms of mean, best, worst, and standard devia-
tion values. The obtained numerical results are listed in Tables II, 
III, and IV for unimodal, multimodal, and small size classical bench-
mark functions. Considering the numerical results provided in the 
respective tables, apart from CF7 unimodal and CF9 multimodal 
benchmark functions, the proposed SCANM algorithm performs 
better.

Besides the numerical values, the comparative convergence pro-
files of some benchmark functions from unimodal, multimodal, and 

Fig. 4. Comparative convergence curves of SCA and SCANM algorithms obtained from unimodal (top row), multimodal (middle row), and 
multimodal small size (bottom row) classical benchmark functions. SCA, sine–cosine algorithm; SCANM, sine–cosine and Nelder–Mead algorithm.
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multimodal small size types are also illustrated in Figs. 4, 5, and 6. 
The proposed SCANM can be observed to be better overall in terms 
of overcoming the stagnation in the local minima and reaching the 
global optimum point step by step. Moreover, Table V provides the 
Wilcoxon signed-rank results where , ▽, and ≈ represents win, 
lost, and tie. The Wilcoxon test provides a good opportunity for 
performance assessments since it is a non-parametric statistical 
hypothesis test that can be used when the results are not assumed 
to be normally distributed. The paired Wilcoxon signed-rank test at 
α = 0.05 was adopted to compare the significance of the two algo-
rithms in this study. Except for CF4, CF7, CF9, and CF11, the superior-
ity of the proposed SCANM can clearly be observed.

B. The Performance of SCANM Against Other Algorithms Using 
Different Benchmark Functions
In the previous section, the improved performance of the proposed 
SCANM has comparatively been demonstrated against the original 
form of SCA using classical benchmark functions. In this subsec-
tion, the performance of the proposed SCANM algorithm is com-
paratively demonstrated using other available well-performing 

and popular GWO along with recently proposed and promising 
AOA and HHO algorithms using challenging benchmark functions 
from CEC 2017 test suite [23]. In addition, the original form of the 
SCA has also been used for comparisons. The reason for employing 
those algorithms, apart from SCA, can briefly be stated as follows. 
The GWO is one of the most cited and well-performing meta-
heuristic optimizers while the AOA and the HHO are the recently 
developed metaheuristic algorithms for optimization problems 
and have been demonstrated to be highly successful for various 
problems [26–28]. 

The adopted benchmark functions are listed in Table VI which  
includes unimodal fixed size (F1–F3), multimodal fixed size 
(F4–F6) along with shifted, rotated, hybrid, and composite (F7–
F17) benchmark functions. The listed test functions were used to  
assess the exploration and exploitation capabilities along with the local 
minima avoiding the ability of the SCANM algorithm comparatively. 

The comparative numerical results for the abovementioned bench-
mark functions are provided in Tables VII and VIII. The respective 

Fig. 5. Boxplots for F1–F17 are defined in Table IV.
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Fig. 6. Convergence curves of F1–F17 functions are defined in Table IV.

tables clearly demonstrate the overall better ability of the pro-
posed SCANM algorithm over other algorithms of GWO, AOA, HHO, 
and SCA.

In addition, the performance of the proposed SCANM has also com-
paratively been evaluated against all tests in terms of convergence 
and boxplot analyses. The boxplot analysis for all test functions is 
provided in Fig. 5 and the convergence curves are given in Fig. 6. 
The SCANM algorithm achieves all statistical metrics nearest to each 
other and around the optimum value. However, some values fall far 
from the range only for F8. As can be observed in the convergence 

curves, provided in Fig. 6, the SCANM algorithm converges better 
than other algorithms despite the difference in function types.

The effectiveness of the SCANM algorithm against other available 
competitive algorithms has also been measured using Wilcoxon 
signed-rank test as listed in Table IX. Apart from functions of F9, 
F10, F14, and F17, SCANM is the winner compared to the GWO 
algorithm. In terms of AOA, the proposed SCANM is the winner for 
all functions. Similarly, the proposed SCANM is the winner for test 
functions (except the functions F10, F11, F12, and F14) compared 
to the HHO algorithm. Lastly, the proposed SCANM is the winner 
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TABLE V. WILCOXON SIGNED-RANK TEST RESULTS FOR SCA AND SCANM AGAINST TEST FUNCTIONS OF CF1–CF23

Function P Results

CF1 1.7344E−06 □

CF2 1.7344E−06 □

CF3 1.7344E−06 □

CF4 1.3595E−04 ▽

CF5 1.7344E−06 □

CF6 1.7344E−06 □

CF7 1.7344E−06 ▽

CF8 1.9729E−05 □

CF9 0.035 ▽

CF10 1.7344E−06 □

CF11 4.4493E−05 ▽

CF12 3.5888E−04 □

CF13 2.3534E−06 □

CF14 0.102 ≈

CF15 3.1123E−05 □

CF16 1.7344E−06 □

CF17 1.7344E−06 □

CF18 1.7344E−06 □

CF19 1.7344E−06 □

CF20 1.9209E−06 □

CF21 1.7344E−06 □

CF22 3.5888E−04 □

CF23 2.8434E−05 □
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TABLE VI. UNIMODAL FIXED-DIMENSION, MULTIMODAL FIXED-DIMENSION, AND CEC 2017 FUNCTIONS

Type Function Name Range Dim (D) Global Min. (fmin.)

Unimodal fixed dimension F1 Beale [−4.5, 4.5] 2 0

F2 Booth [−10, 10] 2 0

F3 Leon [−10, 10] 2 0

Multimodal fixed dimension F4 Chichinadze [−30, 30] 2 −43.3159

F5 Helical Valley [−10, 10] 3 0

F6 Himmelblau [−5, 5] 2 0

Benchmark functions from CEC 
2017 test Suite

F7 Shifted and Rotated Bent Cigar Function [−100, 100] 10 100

F8 Shifted and Rotated Rosenbrock’s Function [−100, 100] 10 300

F9 Shifted and Rotated Expanded Schaffer’s F6 Function [−100, 100] 10 500

F10 Hybrid Function 2 (N = 3) [−100, 100] 10 1100

F11 Hybrid Function 3 (N = 3) [−100, 100] 10 1200

F12 Hybrid Function 4 (N = 4) [−100, 100] 10 1300

F13 Hybrid Function 5 (N = 4) [−100, 100] 10 1400

F14 Hybrid Function 6 (N = 4) [−100, 100] 10 1500

F15 Hybrid Function 6 (N = 5) [−100, 100] 10 1800

F16 Hybrid Function 6 (N = 6) [−100, 100] 10 1900

F17 Composite Function 5 (N = 5) [−100, 100] 10 2500
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TABLE VII. PERFORMANCES OF ALGORITHMS THROUGH BENCHMARKS OF UNIMODAL AND MULTIMODAL FIXED FUNCTIONS

Function Metrics GWO AOA HHO SCA SCANM

F1 Mean 5.0805E−02 3.6083E−01 1.5458E−10 3.7012E−04 2.0543E−33

Best value 1.1117E−09 6.3149E−05 0 4.0369E−05 0

Worst value 7.6207E−01 1.4053E+00 2.4889E−09 1.5709E−03 6.1630E−32

Std. Dev. 1.9334E−01 4.6680E−01 5.3855E−10 4.0199E−04 1.1252E−32

F2 Mean 6.1768E−07 7.0503E−07 5.3274E−05 1.5779E−03 5.2591E−32

Best value 6.2710E−09 6.2074E−09 1.3485E−09 1.8847E−05 0

Worst value 2.4683E−06 1.7325E−06 3.3179E−04 4.7345E−03 7.8886E−31

Std. Dev. 5.8463E−07 5.1931E−07 7.4808E−05 1.1903E−03 2.0014E−31

F3 Mean 2.4468 E−06 2.7302E−02 2.8463E−05 6.9055E−04 6.5738E−33

Best value 5.6232E−08 1.9811E−06 4.4373E−31 5.8615E−06 0

Worst value 1.2893E−05 8.5024E−02 1.4730E−04 2.9711E−03 4.9304E−32

Std. Dev. 3.1629E−06 2.6490E−02 4.2952E−05 6.5909E−04 1.7047E−32

F4 Mean −4.2857E+01 −3.5285E+01 −4.2810E+01 −4.2895E+01 −4.2900E+01

Best value −4.2944E+01 −4.2944E+01 −4.2944E+01 −4.2944E+01 −4.2944E+01

Worst value −4.2497E+01 −1.9097E+01 −4.2497E+01 −4.2497E+01 −4.2497E+01

Std. Dev. 1.6556 E−01 7.5345E+00 2.0808E−01 9.8564E−02 1.3646E−01

F5 Mean 9.7870 E−04 2.6352E−01 2.0524E−02 5.0601E−03 3.9525E−323

Best value 2.4530E−04 6.7526E−13 4.4505E−07 5.8203E−06 0

Worst value 2.8038E−03 2.2867E+00 2.0533E−01 2.6192E−02 8.2015E−322

Std. Dev. 6.4244E−04 6.8319E−01 4.0824E−02 6.4953E−03 0

F6 Mean 9.7922E−06 9.0476E−07 5.6097E−06 1.7989E−02 4.9961E−31

Best value 2.9040E−07 1.3020E−08 2.3886E−16 8.7665E−05 0

Worst value 4.7388E−05 3.7600E−06 7.1324E−05 7.2318E−02 3.1554E−30

Std. Dev. 1.1091E−05 9.6477E−07 1.5322E−05 1.8820E−02 8.1517E−31

SCA, sine–cosine algorithm; SCANM, sine–cosine and Nelder–Mead algorithm; GWO, grey wolf optimization; AOA, Archimedes optimization algorithm; HHO, Harris 
hawks optimization.
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TABLE VIII. PERFORMANCES OF ALGORITHMS THROUGH BENCHMARK FUNCTION FROM CEC 2017

Function Metrics GWO AOA HHO SCA SCANM

F7 Mean 2.7577E+07 8.9130E+09 1.0599E+06 8.9800E+08 7.5594E+02

Best value 5.3703E+04 3.2051E+09 3.3433E+05 5.1802E+08 7.2656E+02

Worst value 3.3377E+08 1.7995E+10 4.6279E+06 1.3584E+09 7.6947E+02

Std. Dev. 8.4233E+07 4.4830E+09 8.3496E+05 2.5295E+08 9.6575E+00

F8 Mean 3.1522E+03 1.2071E+04 7.2816E+02 2.9002E+03 3.0000E+02

Best value 3.1844E+02 4.6399E+03 3.2810E+02 9.5592E+02 300

Worst value 1.5581E+04 1.7988E+04 2.1162E+03 8.2647E+03 3.0000E+02

Std. Dev. 3.3985E+03 2.9694E+03 3.9479E+02 1.6637E+03 2.5985E−13

F9 Mean 5.2215E+02 5.6657E+02 5.5299E+02 5.5611E+02 5.3684E+02

Best value 5.0603E+02 5.2237E+02 5.2049E+02 5.3968E+02 5.1293E+02

Worst value 5.4323E+02 5.9811E+02 5.8622E+02 5.7094E+02 5.6074E+02

Std. Dev. 9.6594E+00 1.7994E+01 1.9160E+01 7.4380E+00 1.1368E+01

F10 Mean 1.1432E+03 4.7633E+03 1.2022E+03 1.2542E+03 1.1918E+03

Best value 1.1101E+03 1.3422E+03 1.1236E+03 1.1487E+03 1.1050E+03

Worst value 1.2217E+03 1.1582E+04 1.3683E+03 1.4067E+03 1.7438E+03

Std. Dev. 2.9470E+01 3.3163E+03 6.5688E+01 6.0652E+01 1.1493E+02

F11 Mean 5.8932E+05 2.6379E+08 3.8260E+06 2.9540E+07 3.8415E+04

Best value 1.4111E+04 2.3039E+04 3.3085E+04 3.7971E+06 1.4825E+03

Worst value 3.1952E+06 1.7369E+09 1.8681E+07 1.1844E+08 9.6781E+05

Std. Dev. 7.9914E+05 3.7306E+08 4.3306E+06 2.9334E+07 1.7646E+05

F12 Mean 1.2097E+04 1.2045E+04 1.5438E+04 6.4259E+04 3.2664E+03

Best value 3.4951E+03 3.6035E+03 2.2459E+03 3.2823E+03 1.3334E+03

Worst value 3.1842E+04 3.0544E+04 4.7288E+04 3.8177E+05 1.5539E+04

Std. Dev. 7.3391E+03 8.6250E+03 1.2496E+04 7.1685E+04 4.2293E+03

F13 Mean 3.5630E+03 8.2997E+03 1.8110E+03 2.2445E+03 1.6090E+03

Best value 1.4739E+03 1.4630E+03 1.4911E+03 1.5060E+03 1.4433E+03

Worst value 7.2449E+03 2.8196E+04 3.0128E+03 5.1392E+03 1.9760E+03

Std. Dev. 2.0684E+03 8.8217E+03 3.7711E+02 8.9221E+02 1.4013E+02

F14 Mean 7.9933E+03 1.8543E+04 8.6255E+03 4.0519E+03 8.3746E+03

Best value 1.5836E+03 4.1909E+03 4.2116E+03 1.9491E+03 1.5364E+03

Worst value 2.7401E+04 4.4210E+04 1.3419E+04 8.4934E+03 4.1752E+04

Std. Dev. 6.9526E+03 8.5143E+03 2.6742E+03 1.8663E+03 1.3211E+04

F15 Mean 2.8458E+04 7.2500E+06 1.8167E+04 4.4106E+05 2.7643E+03

Best value 2.8285E+03 2.9501E+03 2.1558E+03 2.6956E+04 1.8295E+03

Worst value 5.3095E+04 1.9279E+08 4.0875E+04 1.6681E+06 8.4551E+03

Std. Dev. 1.4356E+04 3.5315E+07 1.3349E+04 4.5058E+05 1.4828E+03
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Function Metrics GWO AOA HHO SCA SCANM

F16 Mean 1.0214E+04 1.1504E+05 2.0217E+04 9.5786E+03 2.6841E+03

Best value 1.9498E+03 1.9369E+03 1.9901E+03 1.9945E+03 1.9126E+03

Worst value 2.4214E+04 2.3583E+05 1.4068E+05 3.1633E+04 1.0775E+04

Std. Dev. 7.5209E+03 8.1856E+04 2.9057E+04 8.5338E+03 1.7784E+03

F17 Mean 2.9378E+03 3.3210E+03 2.9387E+03 3.0101E+03 2.9359E+03

Best value 2.9002E+03 3.0707E+03 2.8997E+03 2.9569E+03 2.8978E+03

Worst value 2.9767E+03 4.1075E+03 2.9769E+03 3.9614E+03 3.0394E+03

Std. Dev. 1.5782E+01 2.3542E+02 1.9934E+01 1.8033E+02 3.5725E+01

SCA, sine–cosine algorithm; SCANM, sine–cosine and Nelder–Mead algorithm; GWO, grey wolf optimization; AOA, Archimedes optimization algorithm; HHO, Harris 
hawks optimization.

TABLE VIII. PERFORMANCES OF ALGORITHMS THROUGH BENCHMARK FUNCTION FROM CEC 2017 (CONTINUED)



Electrica 2022; 22(2): 143-159
Kayri et al. SCANM for Optimization

157

TABLE IX. WILCOXON SIGNED-RANK TEST RESULTS BETWEEN SCANM AND OTHER ALGORITHMS

Function Metrics GWO AOA HHO SCA

F1 P 1.7344E−06 1.7344E−06 3.7896E−06 1.7344E−06

Result □ □ □ □

F2 P 1.7344E−06 1.7344E−06 1.7344E−06 1.7344E−06

Result □ □ □ □

F3 P 1.7344E−06 1.7344E−06 1.7344E−06 1.7344E−06

Result □ □ □ □

F4 P 1.1138E−03 1.1265E−05 1.3317E−04 2.1053E−03

Result □ □ □ □

F5 P 1.7344E−06 1.7344E−06 1.7344E−06 1.7344E−06

Result □ □ □ □

F6 P 1.7344E−06 1.7344E−06 1.7344E−06 1.7344E−06

Result □ □ □ □

F7 P 1.4839E−03 1.7344E−06 2.7653E−03 1.7344E−06

Result □ □ □ □

F8 P 1.7344E−06 1.7344E−06 1.7344E−06 1.7344E−06

Result □ □ □ □

F9 P 2.2248E−04 3.5152E−06 4.8969E−04 4.2857E−06

Result ▽ □ □ □

F10 P 3.6094E−03 1.7344E−06 2.2888E−01 1.1138E−03

Result ▽ □ ▽ □

F11 P 3.5888E−04 3.1123E−05 7.9710E−01 3.1123E−05

Result □ □ ▽ □

F12 P 3.4053E−05 9.7110E−05 3.4053E−05 2.6033E−06

Result □ □ □ □

F13 P 2.0515E−04 2.3534E−06 6.0350E−03 2.1630E−05

Result □ □ □ □

F14 P 1.4704E−01 2.9575E−03 3.8203E−01 3.9333E−01

Result ▽ □ ▽ ▽

F15 P 2.1266E−06 1.7344E−06 2.8786E−06 1.7344E−06

Result □ □ □ □

F16 P 1.4773E−04 2.1266E−06 8.4661E−06 7.6909E−06

Result □ □ □ □

F17 P 0.7499 1.7344E−06 7.6552E−01 2.1630E−05

Result ▽ □ ▽ □

Rank (□/▽/≈) 13/4/0 17/0/0 13/4/0 16/1/0

SCA, sine–cosine algorithm; SCANM, sine–cosine and Nelder–Mead algorithm; GWO, grey wolf optimization; AOA, Archimedes optimization algorithm; HHO, Harris 
hawks optimization.
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for all test functions, except F14, compared to SCA. Those results 
confirm the overall greater capability of the proposed SCANM 
algorithm.

IV. CONCLUSION

In this study, a new hybrid metaheuristic optimization algorithm 
named SCANM has been proposed for solving optimization prob-
lems with different natures. The proposed SCANM algorithm has 
been used to solve classical, unimodal, multimodal, fixed dimen-
sion, shifted, rotated, hybrid, and composite benchmark functions. 
The obtained statistical results demonstrated the highly competi-
tive structure of the proposed SCANM algorithm. The effectiveness 
of the SCANM has further been shown by performing Wilcoxon 
signed-rank test as a non-parametric test. The obtained results 
have shown that the proposed SCANM hybrid algorithm can be 
used to solve real-world optimization problems in potential future 
works.

Peer-review: Externally peer-reviewed.

Author Contributions: Concept – M.K., C.İ., D.İ., E.E.; Design – M.K., C.İ., D.İ., 
E.E.; Materials – M.K., C.İ., D.İ., E.E.; Data Collection and/or Processing – M.K., 
C.İ., D.İ., E.E.; Analysis and/or Interpretation – M.K., C.İ., D.İ., E.E.; Literature 
Review – M.K., C.İ., D.İ., E.E.; Writing – M.K., C.İ., D.İ., E.E.

Declaration of Interests: The authors declare that they have no competing 
interest.

Funding: The authors declared that this study has received no financial support.

REFERENCES

1. D. Izci, “An Enhanced Slime Mould Algorithm for Function optimization,” 
in 3rd International Congress on Human-Computer Interaction, Optimi-
zation and Robotic Applications (HORA), 2021, pp. 1–5. [CrossRef]

2. A. Dündar, D. Izci, S. Ekinci, and E. Eker, “A Novel Modified Lévy Flight 
Distribution Algorithm based on Nelder-Mead Method for Function 
Optimization,” DÜMF Mühendislik Derg., vol. 12, no. 3, pp. 487–496, 2021. 
[CrossRef]

3. E. Eker, M. Kayri, S. Ekinci, and D. Izci, “A new fusion of ASO with SA 
algorithm and its applications to MLP training and DC motor speed con-
trol,” Arab. J. Sci. Eng., vol. 46, no. 4, pp. 3889–3911, 2021. [CrossRef]

4. R. M. Rizk-Allah, “Hybridizing sine cosine algorithm with multi-orthogo-
nal search strategy for engineering design problems,” J. Comput. Des. 
Eng., vol. 5, no. 2, pp. 249–273, 2018. [CrossRef]

5. D. Izci, S. Ekinci, M. Kayri, and E. Eker, “A novel improved arithmetic opti-
mization algorithm for optimal design of PID controlled and Bode’s ideal 
transfer function based automobile cruise control system,” Evol. Syst., 
2021. [CrossRef]

6. H. Nenavath, D. R. K. Jatoth, and D. S. Das, “A synergy of the sine-cosine 
algorithm and particle swarm optimizer for improved global optimiza-
tion and object tracking,” Swarm Evol. Comput., vol. 43, pp. 1–30, 2018. 
[CrossRef]

7. D. H. Wolpert, and W. G. Macready, “No free lunch theorems for optimiza-
tion,” IEEE Trans. Evol. Comput., vol. 1, no. 1, pp. 67–82, 1997. [CrossRef]

8. D. Izci, S. Ekinci, E. Eker, and M. Kayri, “Improved manta ray foraging 
optimization using opposition-based learning for optimization prob-
lems,” in International Congress on Human-Computer Interaction, Opti-
mization and Robotic Applications (HORA), 2020, pp. 1–6. [CrossRef]

9. H. Nenavath, and R. K. Jatoth, “Hybridizing sine cosine algorithm with 
differential evolution for global optimization and object tracking,” Appl. 
Soft Comput., vol. 62, pp. 1019–1043, 2018. [CrossRef]

10. H. N. Fakhouri, A. Hudaib, and A. Sleit, “Hybrid particle swarm optimiza-
tion with sine cosine algorithm and Nelder–mead simplex for solving 
engineering design problems,” Arab. J. Sci. Eng., vol. 45, no. 4, pp. 
3091–3109, 2020. [CrossRef]

11. S. Mirjalili, “SCA: A Sine cosine Algorithm for solving optimization prob-
lems,” Knowl. Based Syst., vol. 96, pp. 120–133, 2016. [CrossRef]

12. J. Zhang, Y. Zhou, and Q. Luo, “An improved sine cosine water wave opti-
mization algorithm for global optimization,” J. Intell. Fuzzy Syst., vol. 34, 
no. 4, pp. 2129–2141, 2018. [CrossRef]

13. M. Abdel-Basset, R. Mohamed, M. Abouhawwash, R. K. Chakrabortty, 
and M. J. Ryan, “EA-MSCA: An effective energy-aware multi-objective 
modified sine-cosine algorithm for real-time task scheduling in multi-
processor systems: Methods and analysis,” Expert Syst. Appl., vol. 173,  
p. 114699, 2021. [CrossRef]

14. S. Ekinci, “Optimal design of power system stabilizer using sine cosine 
algorithm,” J. Fac. Eng. Archit. Gazi Univ., vol. 34, no. 3, pp. 1330–1350, 
2019. [CrossRef]

15. J. A. Nelder, and R. Mead, “A simplex method for function minimization,” 
Comput. J., vol. 7, no. 4, pp. 308–313, 1965. [CrossRef]

16. D. Izci, “Design and application of an optimally tuned PID controller for 
DC motor speed regulation via a novel hybrid Lévy flight distribution 
and Nelder–Mead algorithm,” Trans. Inst. Meas. Control, vol. 43, no. 14, 
pp. 3195–3211, 2021. [CrossRef]

17. M. Abdel-Basset, R. Mohamed, and S. Mirjalili, “A novel Whale Optimiza-
tion Algorithm integrated with Nelder–Mead simplex for multi-objec-
tive optimization problems,” Knowl. Based Syst., vol. 212, p. 106619, 2021. 
[CrossRef]

18. D. Izci, S. Ekinci, M. Kayri, and E. Eker, “A novel enhanced metaheuristic 
algorithm for automobile cruise control system,” Electrica, vol. 21, no. 3, 
pp. 283–297, 2021. [CrossRef]

19. D. Izci, S. Ekinci, S. Orenc, and A. Demiroren, “Improved artificial electric 
field algorithm using Nelder-Mead simplex method for optimization 
problems,” in 4th International Symposium on Multidisciplinary Studies 
and Innovative Technologies (ISMSIT), 2020, pp. 1–5. [CrossRef]

20. D. Izci, and S. Ekinci, “A novel hybrid ASO-NM algorithm and its applica-
tion to automobile cruise control system,” 1st ed., in 2nd International 
Conference on Artificial Intelligence: Advances and Applications,  
G. Mathur, M. Bundele, L. Mahendra, and M. Paprzycki, Eds. Singapore: 
Springer, 2022.

21. D. Izci, S. Ekinci, H. L. Zeynelgil, and J. Hedley, “Performance evaluation 
of a novel improved slime mould algorithm for direct current motor and 
automatic voltage regulator systems,” Trans. Inst. Meas. Control, vol. 44, 
no. 2, pp. 435–456, 2022. [CrossRef]

22. D. Izci, B. Hekimoğlu, and S. Ekinci, “A new artificial ecosystem-based 
optimization integrated with Nelder-Mead method for PID controller 
design of buck converter,” Alex. Eng. J., vol. 61, no. 3, pp. 2030–2044, 
2022. [CrossRef]

23. N. H. Awad, M. Z. Ali, J. Liang, B. Y. Qu, and P. N. Suganthan, “Problem 
definitions and evaluation criteria for the CEC 2017 special session and 
competition on real-parameter optimization,” Nanyang Technol. Univ., 
Singapore, Tech. Rep., 2016, pp. 1–34.

24. Q. Askari, M. Saeed, and I. Younas, “Heap-based optimizer inspired by 
corporate rank hierarchy for global optimization,” Expert Syst. Appl., vol. 
161, p. 113702, 2020. [CrossRef]

25. S. Mirjalili, S. M. Mirjalili, and A. Lewis, “Grey wolf optimizer,” Adv. Eng. 
Softw., vol. 69, pp. 46–61, 2014. [CrossRef]

26. F. A. Hashim, K. Hussain, E. H. Houssein, M. S. Mabrouk, and W. Al-Ata-
bany, “Archimedes optimization algorithm: A new metaheuristic algo-
rithm for solving optimization problems,” Appl. Intell., vol. 51, no. 3, pp. 
1531–1551, 2021. [CrossRef]

27. A. A. Heidari, S. Mirjalili, H. Faris, I. Aljarah, M. Mafarja, and H. Chen, “Har-
ris hawks optimization: Algorithm and applications,” Futur Gener. Com-
put. Syst., vol. 97, pp. 849–872, 2019. [CrossRef]

28. D. Izci, S. Ekinci, A. Demiroren, and J. Hedley, “HHO Algorithm based PID 
Controller Design for Aircraft Pitch Angle Control System,” in Interna-
tional Congress on Human-Computer Interaction, Optimization and 
Robotic Applications (HORA), 2020, pp. 1–6. [CrossRef]

https://doi.org/10.1109/HORA52670.2021.9461325
https://doi.org/10.24012/dumf.955645
https://doi.org/10.1007/s13369-020-05228-5
https://doi.org/10.1016/j.jcde.2017.08.002
https://doi.org/10.1007/s12530-021-09402-4
https://doi.org/10.1016/j.swevo.2018.02.011
https://doi.org/10.1109/4235.585893
https://doi.org/10.1109/HORA49412.2020.9152925
https://doi.org/10.1016/j.asoc.2017.09.039
https://doi.org/10.1007/s13369-019-04285-9
https://doi.org/10.1016/j.knosys.2015.12.022
https://doi.org/10.3233/JIFS-171001
https://doi.org/10.1016/j.eswa.2021.114699
https://doi.org/10.17341/gazimmfd.460529
https://doi.org/10.1093/comjnl/7.4.308
https://doi.org/10.1177/01423312211019633
https://doi.org/10.1016/j.knosys.2020.106619
https://doi.org/10.5152/electrica.2021.21016
https://doi.org/10.1109/ISMSIT50672.2020.9255255
https://doi.org/10.1177/01423312211037967
https://doi.org/10.1016/j.aej.2021.07.037
https://doi.org/10.1016/j.eswa.2020.113702
https://doi.org/10.1016/j.advengsoft.2013.12.007
https://doi.org/10.1007/s10489-020-01893-z
https://doi.org/10.1016/j.future.2019.02.028
https://doi.org/10.1109/HORA49412.2020.9152897


Electrica 2022; 22(2): 143-159
Kayri et al. SCANM for Optimization

159

Murat Kayri was graduated from Gazi University in Computer Science in 1994. He received his Msc from Yuzuncu Yil 
University in Electrical and Electronic Engineering and his PhD from Biometry and Genetics. He is currently a Professor at 
Yuzuncu Yil University and working on Artificial intelligence and control technologies.

 

Erdal Eker was born in Van, Turkey in 1973. He was graduated from Van Yuzuncu Yil University, Turkey, in Mathematics. He 
received his Msc from Ataturk University, Turkey, in Applied Mathematics and received his PhD from Yuzuncu Yil University 
in Statistics. He is currently an instructor at Mus Alparslan University, Turkey

 

Cengiz İpek graduated from Yüzüncü Yıl University, Faculty of Education, Department of Elementary Mathematics in 2002. 
He completed his master’s degree with thesis in the Department of Statistics at Yüzüncü Yıl University in 2021. He is 
 currently working at Van İpek Yolu Cumhuriyet Secondary School.

 

Davut İzci received his BSc degree from Dicle University, Turkey, in Electrical and Electronic Engineering and his MSc and 
PhD degrees from Newcastle University, England - UK, in Mechatronics and Microsystems, respectively. He is currently an 
Assistant Professor working at Batman University, Turkey. He carries out teaching and research activities both in Faculty of 
Engineering and Vocational School of Technical Sciences. His research interests are in microsystems development, sensing 
applications, robotics, and the applications of metaheuristic optimization algorithms to various control systems.

 


