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Abstract: In this paper, the effects of autapse, a kind of synapse formed between the axon or soma of a neuron and its 

own dendrite, on the transmission of weak signal are investigated in scale-free neuronal networks. In the study, we 

consider that each neuron has an autapse modelled as chemical synapse. Then, a weak signal that is thought to carry 

information or an unwanted activity such as virus is applied to all neurons in the network. It is seen that the autapse with 

its small conductance values can slightly increases the transmission of weak signal across the network when the autaptic 

time delay is equal to the intrinsic oscillation period of the Hodgkin-Huxley neuron. Interestingly, when the autaptic time 

delay becomes equal to half of this intrinsic period or its integer multiples the autapse can prominently blocks the weak 

signal transmission. Also, as the autaptic conductance is increased the weak signal transmission is completely impeded 

by the autapse with its proper auatptic time delays. One consider that the weak signal is an unwanted or virius threatening 

the whole network, this autaptic mechanism is an efficient way to protect the network from attacks. 

Keywords: Autapse, Scale-free, Blocking of  weak signal. 

 

 

1. Introduction 
 

Information exchange among neurons is fulfilled via 

special structures called synapse. There are two different 

types of synapses: electrical synapses and chemical 

synapses [1].  Synaptic connections are commonly 

occurred between two different neurons. On the other 

hand, a different type of synaptic connection called 

autapse, which is established between the axon and the 

dendrites of the same neuron, was firstly introduced by 

Vander Loos and Glaser [2]. Autapse could be electrical 

synapse or chemical synapse [3, 4]. Presence of this 

synaptic connection in different brain regions was 

uncovered various experimental studies by using 

different experimental techniques [5-11]. Tamas et al. 

showed that neurons in visual cortex could have roughly 

between 10 to 30 inhibitory autapses [11]. Lübke at al 

demonstrated that the 80 percent of cortical pyramidal 

neurons have autaptic connections in neocortex of 

human brain [5]. Bacci et al reported that GABAergic 

autaptic activity is present in fast-spiking interneurons 

of layer V in neocortical slices. Also they demonstrated 

that autaptic activity has significant inhibitory effect on 

the repetitive firing, and can increase current threshold 

for evoking action potential [12]. 

In addition to above studies where the presence of 

autapse have been shown with experimental studies, 

there are some studies investigating the effects of 

autapse on neuronal dynamics[13-24]. Saada et al. showed 

that autapse can cause persistent activity in B31/B32 neurons 

of Aplysia [13]. Bacci and Huguenard indicated that autapse 

can have determinative effect on the spike time of 

interneurons in neocortical slices [14]. Li et al. showed via 

histogram analysis that the number of spikes in stochastic 

Hodgkin-Huxley neuron is decreased in the presence of 

autapse [15]. Autapse can trigger the formation of spiral 

wave in regular network comprised of Hindmarsh-Rose 

(HR)[16]. Masoller et al. [17] studied how the subthreshold 

dynamics of Hodgkin-Huxley (HH) neuron interacts with 

time-delayed feedback and noise. They reported that for 

negative feedback, the firing rate can be lower than in the 

noise-free situation, for positive feedback, there are regions 

of delay values where the noise-induced spikes are inhibited 

by the feedback (i.e., autapse). Connelly found that autapse 

enhances the synchrony of basket cell membrane potentials 

across the network during neocortical gamma oscillations 

[18]. Wang et al studied that autapse-induced transition of 

firing pattern using the HR neuron model theoretically. They 

indicated that delayed autaptic feedback connection switches 

the electrical activitie of the HR neuron among quiescent, 

periodic and chaotic firing patterns [19]. In Ref [20], it was 

shown that the autapse can enhance or abolish the status of 

mode-locking and can effectively regulate the neuronal 

response. Sainz-Trapaga et al. investigated the dynamics of 

thermally sensitive neurons that display intrinsic oscillatory 

activity. They reported that a self-feedback causes spikes by 
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increasing the amplitude of the subthreshold oscillations 

above the threshold [21]. In Ref [22], it was shown that 

single spikes and burst type spikes is a sensitive function 

of autaptic time delay.  Besides, Yılmaz et al. revealed 

that the presence of autapse can significantly enhances 

the propagation of pacemaker activity across both scale-

free (SF) and small world (SW) neuronal networks [23-

24]. 

In the above studies conducted in network level, it is 

considered that only pacemaker neuron has autaptic 

connection. But in realistic conditions, many neurons in 

the network can have this type of connection. In this 

study, we take into account that all neurons in the 

network have autapse modeled as chemical synapse. A 

weak signal which can be thought an unwanted signals 

(may be virus or an anomaly) is injected to all neurons. 

Then, the effects of autapse on the transmission or 

propagation of this weak signal is investigated in scale-

free neuronal networks. When the obtained results 

evaluated, we briefly say that, autapse can become an 

efficient control mechanism to prevent the spreading of 

unwanted signals in scale-free neuronal networks. 

 

2. Model and Methods 
 

In order to simulate the stochastic neuronal dynamics 

in the scale-free network effectively, we employ the 

Hodgkin-Huxley equations [25]. 

 

Cm
dVi

dt
+ gK

maxni
4(Vi − EK) + gNa

maxmi
3h(Vi − ENa) +

gl(Vi − El) = Iinj − Ii
aut + ∑ εij(Vj − Vi)

N
j=1 , i =

1, 2, … N                                                                      (1) 

 

where Cm = 1μF/cm2 is the capacity of the cell 

membrane, Vi denotes the membrane potential of neuron 

i. gNa
max = 120mScm−2 and gK

max = 36mScm−2 

respectively denote the maximal potassium and sodium 

conductance, when all ion channels are open. The 

leakage conductance is assumed to be constant, 

equaling gl = 0.3. EK = −77 mV, ENa = 50 mV and 

El = −54.4 mV are the reversal potentials for the 

potassium, sodium and leakage current, respectively. N 

is total number of neuron in the netwoks. In this paper it 

is assumed that ε ij = ε, if the neurons i and j are 

connected; otherwise ε ij = 0. Here, Iinj is given with the 

following equation [15]: 

 

Iinj = sin (0.3t)                                                                  (2) 

 

Ii
aut is the autaptic current stemming from the autaptic 

connection of neuron i. Autapse is assumed as chemical 

synapse in this paper and modeled using the so-called 

fast threshold modulation given by the following 

function. 

  

Ii
aut   = −κ(Vi(t) − Vsyn)S(t − τ)                              (3) 

 

S(t − τ) = 1/{1 + exp (−k(Vi(t − τ) − θ))}            (4) 

 

where κ denotes the conductance of line that is flowed 

autaptic current on, and τ represents the autaptic time delay, 

which occurs because of the finite propagation speed during 

axonal transmission. Vsyn =  2 mV for excitatory chemical 

autapse, k  =  8   and θ =   −0.25. 

mi and hi represent the activation and inactivation 

variables for sodium channels of neuron i, respectively. The 

activation variables for potassium channels of neuron of i is 

expressed with ni.  The gating dynamics is described by the 

Langevin generalization that based on Fox’s algorithm as 

follows [26]: 

 
dx

dt
= αx(V)(1 − x) − βx(V)x + ζx(t), x = m, n, h            (5)     

 

where αx(V) and βx(V) are the voltage-dependent rate 

functions for the gating parameter x [25]. 

 

αm(V) =
0.1(V+40)

1−exp (−(V+40)/10)
                                                (6) 

 

βm(V) = 4exp [−(V + 65)/18]                                        (7) 

 

αh(V) = 0.07exp [−(V + 65)/20]                                   (8) 

 

βh(V) =
1

1+exp [−(V+35)/10]
                                                  (9) 

 

αn(V) =
0.01(V+55)

1−exp [−(V+55)/10]
                                               (10) 

 

βh(V) = 0.125exp [−(V + 65)/80]                               (11) 

 

ζx denotes the independent zero mean Gaussian white noise 

whose autocorrelation functions are given as follows [25]: 

 

〈ζm(t)ζm(t′)〉 =
2αmβm

NNa(αm+βm)
δ(t − t′)                             (12) 

 

〈ζh(t)ζh(t′)〉 =
2αhβh

NNa(αh+βh)
δ(t − t′)                                (13) 

 

〈ζn(t)ζn(t′)〉 =
2αnβn

NK(αn+βn)
δ(t − t′)                                 (14) 

 

where NNa and NK represent the total numbers of sodium and 

potassium channel, and  calculated as  NNa = ρNaS and NK =
ρKS, respectively. S is the cell size or the membrane area 

used for the scaling of channel noise intensity. The number 

of channels per square micrometer of cell size is ρNa =
60 μm−2 for sodium and ρK = 18 μm−2 for potassium. It is 

given in Eq. (12, 13, 14) that when the cell size is large 

enough the stochastic effect added by the ion channels to the 

membrane potential is trivial, but when the cell size is small 

the stochastic effect due to the ion channels is very crucial 

[31]. 

Following the procedure in [28], we construct the scale-

free neuronal network, using N=200 neurons with different 

average degree of connectivity, kavg. To quantitatively 

demonstrate the weak signal propagation degree, we 

calculate Fourier series coefficients. To do so, we first 

calculate the average membrane potential Vavg(t) =
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1

N
∑ 𝑉𝑖(𝑡)N

i  during N = 1000 periods. Then, we calculate 

the Fourier coefficients as follows:   

 

Qsin =
ω

2Nπ
∫ 2Vavg(t)(t)sin(ωt)

2Nπ/ω

0
dt                (15) 

Qcos =
ω

2Nπ
∫ 2Vavg(t)cos(ωt)

2Nπ/ω

0
dt                    (16) 

Q = √Qsin
2 + Qcos

2                                                      (17) 

 

where, 𝜔 = 2𝜋/𝑡𝑠 is the frequency of the weak signal. 

Notably, the larger the Q the better the weak signal 

propagation. 

 

3. Results and Discussion 
 

In all previous studies where the propagation of the 

weak localized pacemaker activity is considered, only 

one neuron acting as pacemaker has an autapse. But, 

here we consider that each neuron in the network has 

one autapse modeled as chemical synapse. Then, we 

investigate the effects of autapse on the transmission or 

propagation of weak signal applied to the all neurons.  

To do so, we initially fix the cell size S = 16μm2  and 

the average degree of connectivity kavg = 10 and the 

coupling constant 𝜀 = 0.05. In Fig.1, we give the 

dependence of Q on the autaptic time delay for low 

levels of autaptic conductances. Also to make a 

comparison, we demonstrate Q values of the network in 

the absence of autapse (black straight line in Fig.1). 

It is seen in Fig.1 that the weak signal propagation 

capacity of the network slightly increases for finely 

tuned 𝜏. But, interestingly, when 𝜏 is equal to half of the 

intrinsic oscillation period of HH neuron (𝑇𝑜𝑠𝑐 ≈ 21𝑚𝑠 

[23]) or its odd multiples, the weak signal propagation 

throughout network decreases prominently compared 

with the without autapse. 
 

 
 

Figure 1. Effect of low autaptic conductance levels on the 

transmission of weak signal (ɛ=0.05, S=16 µm2, N=200, 

kavg=10) 

 

To provide clear evidence for the results in Fig.1, we 

give the average membrane potential and the weak 

signal in the same panel for three different autaptic time 

delay values when autaptic conductance κ = 0.06 in Fig 2.  
 

 
 

Figure 2. Average membrane potential at different autaptic 

time delay value with weak signal (weak signal is magnified 20 

times and is shifted towards below20 units at vertical axis)  a) τ =
30 ms  b) τ = 17 ms  c) τ = 10 ms  (ɛ=0.05, S=16 µm2, N=200, 

kavg=10, κ = 0.06) 
 

It is seen that the overlap between the weak signal and 

average membrane potential is maximum, and the average 

membrane potential fires when the weak signal is maximum. 

But in Fig 2a and Fig. 2c, matching between weak signal and 

average membrane potential is disrupted. Particularly in Fig 

2c, the average membrane potential spikes do not occur at 

the time when the weak signal takes the peak value, and cycle 

skipping occurs. As a consequences, when the match 

between the weak signal and average membrane potential is 

well, the obtained Q values are high, which indicates better 

propagation of weak signal across the network. If the match 

between average membrane potential and the weak signal is 

bad and cycle skipping occurs, low Q values are obtained.  

In Fig. 3, we show the dependence of Q on 𝜏 values for 

intermediate and high level of autaptic conductance levels. 

As seen in Fig.3, as the autaptic conductance level increases 

the propagation of weak signal across the network reduces, 

and even, at a strong autaptic conductance level (𝜅 = 0.76) 

the propagation of weak signal is ceased by autapse for some 

autaptic time delay intervals when compared to the without 

autapse. Interestingly, when the auatptic time delay equals to 

the intrinsic oscillation period (𝑇𝑜𝑠𝑐) of HH neuron or its 

integer multiples the level of weak signal propagation takes 

the values roughly equal to the ones  obtained  in the absence 

of autapse. 

To provide more evidence about the blockage of weak 

signal transmission, we plot the average membrane potential 

and the weak signal in the same panel for different autaptic 

time delay values in Fig 4. 

As seen in Fig.4a, average membrane potential of the 

network has spikes occurring at approximately time 

instances when the weak signal has peak value. This 

coherence between average membrane potential and weak 

signal causes high Q values. But, in Fig.4b, the spike times 

of average membrane potential match the negative peak of 

the weak signal, that is, the synchronization between weak 

signal and spiking activity is destroyed, which leads to obtain 

small Q values.  
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Figure 3. Effect of autaptic conductance on transmisson 

of weak signal depend on autaptic time delay (ɛ=0.05, S=16 

µm2, N=200, kavg=10) 
 

 
 

Figure 4. Average membrane potential and weak signal 

(weak signal is magnified 20 times and is shifted 20 units at 

vertical axis) for different auatptic time delays. a) τ = 21 ms 

b) τ = 35 ms (ɛ=0.05, S=16 µm2, N=200, kavg=10, κ = 0.21) 
 

 
 

Figure 5. The dependence of Q on autaptic conductance 

and autaptic time delay (ɛ=0.05, S=16 µm2, N=200, kavg=10) 
 

To get a global view, we show the contour plot of Q 

on 𝜅 − 𝜏 parameters space in Fig. 5. Results reveal that 

for low values of autaptic time delay (roughly 𝜏 <
10 𝑚𝑠), the weak signal propagation across the network 

is not affected by the variations in autaptic conductance, 

and the Q values take approximately the same value 

obtained in the absence of autapse. Similarly, when the 

autaptic conductance is lower than 𝜅 = 0.1, there is not 

any effect of autaptic time delay on the propagation of 

weak signal in the network. When 𝜏 > 10 𝑚𝑠  and 𝜅 >
0.1, we obtain different resonance islands where the 

degree of propagation of weak signal is almost the same 

with that obtained in the absence of auatpse (red shaded 

region). Outside of these resonance islands, we obtain that 

the presence of autapse significantly blocks the propagation 

of weak signal.  

 

4. Conclusions 
 

In sum, the effects of autapse on the propagation of weak 

signal are investigated in scale-free neuronal networks where 

each neuron has a chemical autapse. We obtain that when 

each neuron has autaptic connection in the network, the 

presence of autapse does not augment the propagation of 

weak signal in contrast it prevents the propagation of weak 

signal in the network. If someone assumes that this weak 

signal carries an unwanted signal such as infectious disease, 

virus, schizophrenic signal etc., the presence of autapse will 

be an efficient way to cope with this unwanted disturbances. 
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