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Introduction

Texture analysis is the mostly used method in image processing. It is possible to get 
knowledge about segmentation and classification of spatial parameters in images by tex-
ture analysis. Texture analysis is frequently utilized in medical image processing, remote 
sensing, and control systems. Features of texture can be extracted with variety of methods 
such as statistics, geometry, model-based, and signal processing etc. [1-8]. Those features 
are classified by machine learning techniques such that support vector machines, artifi-
cial neural networks. Histogram of oriented gradients method has been primarily used 
for pedestarian detection [9]. In addition, this method has been used to solve problems 
about human detection, crowd detection, 3D segmentation, sign language recognition 
[10-13]. Support vector machines is proposed by Cortes and Vapnik for the purpose of 
solving two dimensional classification problem [14]. It can also be used to solve for multi-
class classifying problem [15]. In addition, svm can be implemented for linear or nonlinear 
classification problems. In this study, hog and feature vector extraction will be discussed 
at first for texture images, and classification of feature vectors via support vector machine 
will be mentioned. 

Histogram of Oriented Gradients

At first, image has been partitioned into piece of blocks and cells, and features of the image 
are obtained by calculating the gradient for every cell [9]. Therefore, images are represented 
with respect to local histograms. Vertical and horizontal gradient of the images are calculated 
with the help of Sobel filters. Lets assume I(x,y) is the image, fx is horizontal gradient whose 
Sobel filter coefficients are [1.0,-1], and  fy represents the vertical gradient whose Sobel filter 
coefficients are [1,0,-1]T  . I(x,y) represents the intensity of the image at (x,y) point. Then gradi-
ent will be calculated as: 

fx(x,y) =I(x+1,y)-I(x-1,y)    (1)
fy(x,y) =I(x,y+1)-I(x,y-1)    (2)
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In addition,

f x, y( )= fx
2+ f y

2

 (3)
(4)

where f(x,y) represents the magnitude and Θ  stands for the 
phase of the gradient.

Support Vector Machines 

Support vector machines classify the group of data by using 
optimal hyperplane [14]. It is illustrated for 2-D data in Figure 
1. Problem is to calculate w and b parameters with a constraint 

on optimum hyperplane such that wx+b=0, and Xi can either 
be +1 or -1. 

Texture Classification via HOG

Texture data have been gathered from Salzburg Texture Image 
Database [16].  Size of the texture images are 512x512. Just 
three of the texture data: fabric, metal and tree textures are 
shown in Figure 2-4.

Implementation has been made by using Python program-
ming language, and opencv machine learning library has been 
used. Texture images are converted into gray level images, and 
following methods are applied to those images. 

Figure 1. Support vectors and optimal hyperplane

Figure 2. Texture image of fabric

Figure 3. Texture image of metal

Figure 4. Texture image of tree 
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Method 1
Calculate the vertical and horizontal gradient for the images of 
size 512x512. Calculate amplitude and angle of the gradients. 
Histogram of angles are calculated by dividing [0.180) degree 
into 9 equal pieces. For every subimage, amplitude values are 
accumulated for each angle in the same piece. Therefore, 9 di-
mensional feature vector is obtained. 

Method 2
Calculate the vertical and horizontal gradient for the im-
ages of size 512x512. Calculate amplitude and angle of the 
gradients. Histogram of angles are calculated by dividing 
[-180, 180) degree into 18 equal pieces. For every subim-
age, amplitude values are accumulated for each angle in 
the same piece. Therefore, 18 dimensional feature vector 
is obtained.

Method 3
Texture image is divided into four piece with a size of 
256x256. Calculate vertical and horizontal gradient for these 
subimages. Calculate amplitude and angle of the gradients. 
Histogram of angles are calculated by dividing [0.180) degree 
into 9 equal pieces. For every subimage, amplitude values are 
accumulated for each angle in the same piece. Therefore, 9 
dimensional feature vector is obtained. Concatenate all fea-
ture vectors together, and obtain 4x9=36 dimensional feature 
vector. 

Method 4
Texture image is divided into four piece with a size of 256x256. 
Calculate vertical and horizontal gradient for these subimag-
es. Calculate amplitude and angle of the gradients. Histogram 
of angles are calculated by dividing [-180, 180) degree into 
18 equal pieces. For every subimage, amplitude values are 
accumulated for each angle in the same piece. Therefore, 18 
dimensional feature vector is obtained. Concatenate all fea-
ture vectors together, and obtain 4x18=72 dimensional fea-
ture vector. 

Method 5
Texture image is divided into 16 piece with a size of 128x128. 
Calculate vertical and horizontal gradient for these subimag-
es. Calculate amplitude and angle of the gradients. Histogram 
of angles are calculated by dividing [0.180) degree into 9 
equal pieces. For every subimage, amplitude values are ac-
cumulated for each angle in the same piece. Therefore, 9 di-
mensional feature vector is obtained. Concatenate all feature 
vectors together, and obtain 16x9=144 dimensional feature 
vector.

Method 6
Texture image is divided into four piece with a size of 128x128. 
Calculate vertical and horizontal gradient for these subimag-
es. Calculate amplitude and angle of the gradients. Histogram 
of angles are calculated by dividing [-180, 180) degree into 18 
equal pieces. For every subimage, amplitude values are ac-

cumulated for each angle in the same piece. Therefore, 18 di-
mensional feature vector is obtained. Concatenate all feature 
vectors together, and obtain 16x18=288 dimensional feature 
vector. 

Normalized feature vectors are calculated with all the methods 
before mentioned for the texture image in Figure 2. In addition, 
all feature vectors are shown in Figure 5-10. 

Figure 5. Feature vector calculated with Method 1.

Figure 6. Feature vector calculated with Method 1. 
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Results and Discussion

Opencv library has been used for the classification. Histogram 
intersection kernel is also utilized for the support vector ma-
chine. 230 of texture images which belong to 6 different class 
have been used as a training data, and 16 texture images have 
been utilized as a testing data. Success rate of classification are 
given in Table 1. 

In the literature, size of feature vector using histogram of ori-
ented gradients have been reported 3780 elements [18]. In the 
method 6, size of feature vector has obtained 288 elements. 

Conclusions

Methods which are related with generating 18 piece of histo-
grams with an angles between [-180, 180) have better perfor-

Figure 7. Feature vector calculated with Method 3 Figure 9. Feature vector calculated with Method 5

Figure 8. Feature vector calculated with Method 4 Figure 10. Feature vector calculated with Method 6
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mance results than other methods, i.e Method 4 and Method 
6. For those methods consisting of 18 piece of histograms have 
better success rates when the numbers of feature vectors are 
increased. Method 6 is the best method when success rates are 
taken into account. 
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Table 1. Success rates of classification

Method Success rate

1 43.75%

2 25%

3 50%

4 62.25%

5 31.25%

6 81.25%

Hasan Demir was born in Elbistan, 1972. He received his bachelor’s degree from Yıldız Technical University Elec-
tronics and Communication Engineering Department in 1994, Master’s Degree in from Institute of Science, İs-
tanbul University in 1998, and his Ph.D. degree from İstanbul University, Institute of Science in 2008. Between 
1994 and 1998, He worked as an assistant at T.Ü. Çorlu Engineering Faculty, and between 1998-2008 he worked 
as a research assistant in the Department of Electrical and Electronics Engineering at the I.U. Faculty of Engineer-
ing. Currently, he is an Assistant Professor in the Department of Electronics and Communication Engineering 
at Çorlu Engineering Faculty, N.K.U. He works on artificial neural networks, image processing, wavelet analysis.

https://doi.org/10.1109/34.44407
https://doi.org/10.1007/978-1-4613-1553-7
https://doi.org/10.1109/TPAMI.1979.4766921
https://doi.org/10.1016/0167-8655(87)90086-9
https://doi.org/10.1109/CVPR.2005.177
https://doi.org/10.3169/itej.71.J28
https://doi.org/10.1145/2647868.2655043
https://doi.org/10.1007/978-3-642-24319-6_40
https://doi.org/10.1145/2674396.2674421
https://doi.org/10.1023/A:1022627411411
https://doi.org/10.1016/j.camwa.2008.10.052



