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Abstract: As the number of vehicles in roads increases, information of traffic density becomes crucial to municipalities 

for making better decisions about road management and to the environment for reduced carbon emission. Here, the 

problem of traffic density estimation is addressed when there is continuous influx of vehicle data. First the traffic density 

is modeled by the clusters of the speed groups that are centered after Kernel Density Estimation technique is implemented 

for the probability density function of the speed data. Then, empirical cumulative distribution function of data is found by 

Kolmogorov-Smirnov Test. A peak detection algorithm is used to estimate speed centers of the clusters. Since the 

estimation model has linear and non-linear components, the estimation of variance values and kernel weights are found 

by a nonlinear Least Square approach with separation of parameters property. Finally, the tracking of former and latter 

estimations of a road is calculated by using Scalar Kalman Filtering with scalar state - scalar observation generality 

level. For all example data sets, the minimum mean square error of kernel weights is found to be less than 0.002 while 

error of mean values is found to be less than 0.261. 

Keywords: Traffic Density, Kernel Density Estimation, Kolmogorov-Smirnov Test, Nonlinear Least Square, Scalar 

Kalman Filter. 

 

1. Introduction 
 

The Estimation and prediction of the traffic density 

is necessary to prevent citizens from congested traffic. 

If the decision makers have the knowledge of the current 

and future traffic reports, municipalities would come up 

with better solutions against the traffic problem. Also, 

drivers could have better route options to follow while 

driving. In doing so, they will spend less gasoline and 

time, and hence low carbon emission and less air 

pollution will result in. Although there are many 

different ways to estimate the traffic density, Kernel 

Density Estimation (KDE) is one of the best estimation 

techniques since cars that go on the same road with 

different speeds on different lanes can be better 

represented by KDE [1]. On the other hand, parametric 

and non-parametric approaches form the two types of 

estimation techniques. Former one has a fixed number 

of parameters and the latter one has an increasing 

number of parameters when the training data size 

becomes larger [2]. Since the estimation of traffic 

parameters needs to cope with continuously incoming 

data from the field, KDE, which is non-parametric, is 

exploited to better describe the problem [3]. Gaussian 

distribution performs well to represent real-time data, 

and therefore the sample data is typically modeled as 

normally distributed. In [4] and [5], which are the initial 

work of this study, KDE was used to derive the 

probability density function (PDF) of the received data. 

As mentioned above, KDE reveals various traffic 

scenarios accurately and it is helpful for theoretical 

improvements when it is compared with other methods for 

the PDF expression. In the aforementioned studies, the 

cumulative distribution function (CDF) was found by 

Kolmogorov-Smirnov (KS) test, which is less affected by the 

existence of outliers when compared with other tests [6]. 

When traffic density is estimated, its data can be thought 

of a collection of clusters. The clusters are formed by three 

parameters: kernel weights that show the corresponding 

cluster’s weight among all available clusters, speed centers, 

and bandwidths. In our first study [5], kernel weights are 

estimated by using KDE, KS test, and linear Least Square 

approaches, while the other two parameters were treated as 

constants. In our earlier study [4], all of these parameters 

were taken as non-constants. In the first step of estimations, 

a peak detection algorithm (PDA) over the smoothed version 

of the PDF was utilized for the estimation of mean values. 

Nonlinear LS (NLS) with separation of parameters approach 

was applied successively to estimate variance values and 

kernel weights. First, speed center’s variance and then its 

kernel weights were estimated. After these estimations, the 

next speed center’s bandwidth and its kernel weight were 

estimated, and so on. Linear search method that gives 

accurate results and Newton-Raphson (N-R) Method that 

reaches to the solution in a quite shorter time were exploited 

in the NLS approach [7]. 

In this paper, an extension to the work in [4] will be 

presented. For the same road, if new data arrives in addition 

to the already existing data that is used for the estimation, we 

adopt the tracking of the estimated parameters instead of 
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using the new large data set and recalculating all the 

parameters needed to make a fresh estimate. In 

accomplishing this, first an initial estimate is obtained 

from the new and small sized data. Then, to get an 

overall estimate, the old and the new estimates are 

combined. Hence, a forgetting factor is utilized for the 

tracking of the old and the new estimates so that more 

weight is given to the newly arrived data rather than 

updating them according to their number of samples. 

In the next part, in Section II, the model of the system 

will be verbalized. In Section III, numerical estimations 

and their tracking will be presented and the system 

performance will be assessed. In Section IV, in light of 

these efforts, the deductions will be made. Finally in 

Section V, a summary of conclusions and future 

prospective will be given. 

 

2. The Model 
 

The first two subsections of this section includes 

some equations that are formulated in [4] but we briefly 

present them here since they are also used for the 

tracking algorithm adopted in this paper. 

 

2.1. Finding PDF with KDE and Empirical CDF 

with KS Test 
 

For a given 𝑁 independent samples, let  

𝑥 ≡ {𝑋1, … , 𝑋𝑁} comes from a continuous PDF 𝑓, which 

is defined on 𝑋. Gauss KDE can then be defined as 

follows [8]: 

When the mean of each data sample is 𝑋𝑖 and the 

corresponding variance is 𝜎, then the Gauss Kernel PDF 

is 

 

𝑓(𝑥; 𝜎) =
1

𝑁
∑ 𝜑(𝑥, 𝑋𝑖; 𝜎),

𝑁

𝑖=1

        𝑥 ∈ 𝑅                       (1) 

 

where 

 

𝜑(𝑥, 𝑋𝑖; 𝜎) =
1

√2𝜋𝜎2
𝑒−(𝑥−𝑋𝑖)2 (2𝜎)⁄                              (2) 

 

When the contribution of the Gauss Kernels are 

different, then (1), can be re-expressed by including 

kernel weights, 𝛼𝑖 as: 

 

𝑓(𝑥; 𝜎, 𝛼) =
1

𝑁
∑ 𝛼𝑖𝜑(𝑥, 𝑋𝑖; 𝜎),

𝑁

𝑖=1

      𝑥 ∈ 𝑅                 (3) 

 

where 

 

0 ≤ 𝛼𝑖 ≤ 1      and      ∑ 𝛼𝑖 = 1                                      (4) 

 

Although there are lots of approaches for the 

representation of a PDF, when KDE is preferred for 

mapping, representation via KDE would be more 

suitable for visualization and a better theoretical 

background [8]. Hence, the smoothed version of data is 

treated to represent PDF with KDE since one of the essential 

purposes of KDE is to produce a smooth density surface over 

a 2-D geographical space [9]. 

The next step is the expression of empirical CDF and 

here, KS Test is chosen for the implementation since it is less 

disturbed by the outliers. KS Test initially detects the 

difference among the real and the empirical speed values of 

data set and also how much they are close to each other. 

Since the distribution of speed values is assumed to be 

Gaussian, this assumption can be examined in the CDF plots. 

The methodology is to arrange all datum in the data with an 

increased order and then to rescale them [10]. As expected, 

the CDF plot reaches to unity when the last datum is 

processed. 

When 𝐹 is defined as CDF, �̂� would be the empirical 

CDF and 𝐹(𝑥) is counted as equal to 𝐹0(𝑥) as a hypothesis 

for all 𝑥 ∈ 𝑅 values. Then, KS Test statistics are defined as 

supremum of the difference between �̂�(𝑥) and 𝐹0(𝑥) as 

described in [10]. 

 

2.2. Determination of Speed Centers via PDA and 

Estimation of Variance and Kernel Weights with 

Nonlinear LS Method 
 

The clusters in a data set are decided according to speed 

centers that correspond to different regions in the PDF. 

Therefore, primarily all mean values should be estimated via 

PDA. The algorithm is applied to the PDF, and the speed 

centers are found straightforwardly. First, the derivative of 

the CDF is calculated that produces the PDF. Later, the 

resulting values are smoothed to get the PDF for the 

algorithm implementation. With these, the PDA generates 

accurate mean values since it examines every datum in the 

data set and catches the peak values. Corresponding mean 

values of such peak values are the centers of the clusters. 

After determination of mean values, their variances and 

kernel weights are estimated by using separability of 

parameters property of NLS. In the model, 𝛼 is linear and 𝜎 

is nonlinear with respect to the model as seen in (3). The 

approach is to estimate 𝛼 via LS in terms of 𝜎 and then to 

estimate 𝜎. In order to achieve this, the following equation 

(LS error) should be minimized for 𝛼 [7]; 

 

𝐽(𝜎, 𝛼) = (𝑥 − 𝐻(𝜎)𝛼)𝑇(𝑥 − 𝐻(𝜎)𝛼)                                (5)  
 

Here 𝑥 corresponds to 𝐹 values of empirical CDF, and 

hence 𝐹 will be used instead of 𝑥. The estimation for 𝛼 is 

then: 

 

�̂� = (𝐻𝑇(𝛼)𝐻(𝛼))
−1

𝐻𝑇(𝛼)𝐹                                                (6)  

 

Then, by replacing �̂� into above LS error (5), we get: 

 

𝐽(𝜎, �̂�) = 𝐹𝑇 (𝐼 − 𝐻(𝛼)(𝐻𝑇(𝛼)𝐻(𝛼))
−1

𝐻𝑇(𝛼)) 𝐹         (7)  

 

Thus, minimization of 𝐽(𝜎, �̂�) is the same as 

maximization of the following equation over 𝛼: 

 

𝑚𝑎𝑥
𝛼

[𝐹𝑇𝐻(𝛼)(𝐻𝑇(𝛼)𝐻(𝛼))
−1

𝐻𝑇(𝛼)𝐹]                           (8) 
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We apply the above maximization for each speed 

cluster with the following intermediary variables: 

 

𝐻𝑖 =
1

2
(1 + 𝑒𝑟𝑓

𝑥−𝜇𝑖

𝜎√2
)                                                     (9)                                     

 

𝐹 = ∑ 𝛼𝑖𝐻𝑖                                                                    (10) 

 

𝐹𝑖 = (𝛼𝑖 − ∑ 𝛼𝑗

𝑖−1

𝑗=1

) 𝐻𝑖                                                    (11) 

 

where 𝐹𝑖 and 𝐻𝑖  are for 𝐹 and 𝐻, respectively, for the 

𝑖𝑡ℎ cluster and 𝜇𝑖 is the mean speed value for the same 

cluster. Then the kernel weights 𝛼𝑖s for each cluster can 

be determined as 

 

𝛼𝑖 = (𝐻𝑖
𝑇𝐻𝑖)−1𝐻𝑖

𝑇𝐹𝑖 − ∑ 𝛼𝑗

𝑖−1

𝑗=1

                                     (12) 

 

Initially, the bandwidth of the mean values is 

calculated via (8) by using linear search method or 

Newton-Raphson Method [4]. By then inserting this into 

(12), the kernel weight of the corresponding speed 

center is determined. Since the mean values are already 

found before the application of NLS method, the same 

procedure for the estimation of the variance and kernel 

weight is repeated for each speed center, thereby 

resulting in a successive estimation process. 

 

2.3. Tracking of Traffic Density Estimation 
 

Tracking is very much needed when newly arrived 

data needs to be processed in addition to the past data. 

Instead of going back to the initial state of estimation of 

the parameters by using all the existing and the newly 

arrived data, the estimation of the parameters is just 

updated with the arrival of new data. Hence, the final 

estimates are like reaching a consensus between already 

estimated parameters and newly estimated ones. 

Moreover, the importance of the old and new data is not 

the same for the estimation, because new data has more 

emphasis on estimation and is seen as more probable to 

convey the current traffic scenario. Therefore, on the 

contrary to just reordering estimation results according 

to their number of samples in data sets, the use of a 

forgetting factor is necessary to improve the tracking 

capability in time varying parameter estimation [11]. 

Forgetting factor can be defined as the concept of 

forgetting in which older data is gradually scrapped by 

taking into consideration of more recent information 

[12]. The main idea behind this concept is to give less 

weight to older data and more weight to the new one 

[12]. 

In this study, Scalar Kalman Filter (KF) has been 

used for tracking. Its scalar state - scalar observation 

(𝑠[𝑛 − 1], 𝑥[𝑛]) generality level is chosen as an 

approach. The scalar state and the scalar observation 

equations are as follows [7]: 

 

𝑠[𝑛] = 𝜆𝑠[𝑛] + 𝑢[𝑛]     𝑛 ≥ 0                                              (13) 

 

𝑥[𝑛] = 𝑠[𝑛] + 𝑤[𝑛]                                                               (14) 

 

where 𝜆 is called the forgetting factor with 0 < 𝜆 < 1, 

𝑢[𝑛] is White Gaussian Noise (WGN) with 𝑢[𝑛]~𝒩(0, 𝜎𝑢
2), 

𝑤[𝑛]~𝒩(0, 𝜎𝑤
2), and 𝑠[−1]~𝒩(𝜇𝑠, 𝜎𝑠

2). 𝑤[𝑛] differs from 

WGN only in that its variance is allowed to change in time. 

Further assumption is the independence of 𝑢[𝑛], 𝑤[𝑛], and 

𝑠[−1]. 
𝑠[𝑛] is estimated based on the data set 

{𝑥[0], 𝑥[1], … , 𝑥[𝑛]} as 𝑛 increases, and this process is 

simply a type of filtering. KF approach calculates the 

estimator �̂�[𝑛] subjected to the estimator for the previous 

sample �̂�[𝑛 − 1] and thus, it is recursive in nature [7]. 

With 𝑛 ≥ 0, the scalar KF equations (Prediction (Pr), 

Minimum Prediction MSE (Min Pre MSE), Kalman Gain 

(KG), Correction (Cr), Minimum MSE (Min MSE), 

respectively) for tracking are as follows: 

 

Pr: �̂�[𝑛|𝑛 − 1] = 𝜆�̂�[𝑛 − 1|𝑛 − 1]                                     (15) 

 

Min Pr MSE: 𝑀[𝑛|𝑛 − 1] = 𝜆2𝑀[𝑛 − 1|𝑛 − 1] + 𝜎𝑢
2  (16) 

 

KG: 𝐾[𝑛] =  (𝑀[𝑛|𝑛 − 1]) (𝜎𝑤
2 + 𝑀[𝑛|𝑛 − 1])⁄           (17) 

 

Cr: �̂�[𝑛|𝑛] = 𝜆�̂�[𝑛|𝑛 − 1] + 𝐾[𝑛](𝑥[𝑛] − �̂�[𝑛|𝑛 − 1]) (18) 

 

Min MSE: 𝑀[𝑛|𝑛] = (1 − 𝐾[𝑛])𝑀[𝑛|𝑛 − 1]                 (19) 

 

3. Numerical Calculations 
 

In this part, the system will be tested with 3 examples: 

the first one examines tracking with the change only in speed 

centers, the second one evaluates the tracking of kernel 

weights’ changes, and finally the last one investigates what 

happens if the all variables have new different values. To 

simulate the given scenarios, Data Set 1 is produced and 

estimated firstly and then used in all three examples. For the 

first example, Data Set 2 and Data Set 3 are also created. For 

the second example, tracking of kernel weights is performed 

by using Data Set 1 and Data Set 4. In the last example, Data 

Set 1 and Data Set 5 are used for the estimations and 

tracking. 

Before we further proceed, we will state how some 

parameters in the tracking process are chosen. For example, 

the forgetting factor 𝜆 is calculated as a ratio of number of 

samples in the first data set and the number of all samples. 

By using the forgetting factor, the sample numbers are used 

implicitly in the tracking equation, however, the tracking is 

simply neither updating the overall estimation according to 

the number of samples nor giving equal weights to both old 

and new estimates. As the examples will show, the final 

estimates are closer to the estimates based on the newly 

arrived data rather than the estimates from the old data. 

Assuming that the traffic data is obtained via GPS data, and 

since the accuracy of GPS data is at least 95% according to 

GPS Standards [13], error values 𝜎𝑢
2 and 𝜎𝑤

2  are assumed to 

0.05. For the tracking of mean, instead of �̂�[𝑛 − 1|𝑛 − 1], 
Data Set 1’s mean estimation and instead of 𝑥[𝑛], new data 
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set’s mean estimation are used. For the kernel weight’s 

tracking, kernel weight estimations of the 

aforementioned data sets are taken into calculations. The 

MMSE (minimum mean square error) of each variable 

is calculated separately since the system is scalar. 

A traffic scenario with 3 speed centers is assumed. 

The performance of the approach will be assessed for the 

estimated means, variances, and kernel weights as well 

as tracking. The assumed scenario for the first data set 

has the following parameters with the number of 

samples 𝑁 = 10000:  
 

𝜇1 = 50     𝜇2 = 70      𝜇3 = 100 

 

𝜎1
2 = 6       𝜎2

2 = 7        𝜎3
2 = 5     

 

𝛼1 = 0.3     𝛼2 = 0.5     𝛼3 = 0.2 

 

It is needed to be emphasized that differently from 

[4], in addition to Gaussian distribution variance values, 

the contribution of GPS allowable error is added as 

variance. For the given example, uniformly distributed 

additional variance values are 2.5, 3.5, and 5, 

respectively. The estimation of Data Set 1’s mean values 

via a peak detection algorithm are as follows: 

 

�̂�1 = 50.1489     �̂�2 = 69.9231     �̂�3 = 100.1197 

 

The estimation results are very close to the real 

values as the MMSE is 0.04240:0424. Also, the MMSE 

of each speed center’s estimation of Data Set 1 are 

0.2220, 0.0059, and 0.0143, respectively. The 

variances and kernel weights are estimated by using two 

methods as explained in Section II-B. For N-R Method, 

which reaches accurate results quicker, the estimated 

values are as follows:  

 

�̂�1
2 = 9.5088       �̂�2

2 = 10.2556       �̂�3
2 = 22.8845 

 

�̂�1 = 0.3038       �̂�2 = 0.4674          �̂�3 = 0.2278   
 

When the error values are analyzed, kernel weights and 

speed centers have less error when compared to variance’s 

values. However, the estimation of variances is an 

intermediate step before the estimation of the kernel weights. 

Although variance estimation provides useful information 

about the traffic density, the speed centers and kernel 

weights are more critical in assessing multi-lane traffic 

density. The MMSE of kernel weights is 0.0019 and also the 

MMSE of each kernel weights of Data Set 1 are 1.4440 ×
10−5, 0.0011, and 0.0008, respectively. For the linear 

search method, which takes longer time but that generally 

provides more accurate results, the estimated variances and 

kernel weights are as follows: 

 

�̂�1
2 = 9.5090       �̂�2

2 = 10.2560       �̂�3
2 = 22.8840 

 

�̂�1 = 0.3002       �̂�2 = 0.4619          �̂�3 = 0.2379   
 

with MMSE of 0.0029.  

As can be seen from the estimated values, the proposed 

approach can accurately estimate the targeted parameters as 

MMSE values are acceptably small for the traffic density 

estimation. 

For the first example, new data sets (Data Set 2 and Data 

Set 3) are produced with a 5 𝑘𝑚/ℎ increase in speed centers 

while keeping the other parameters unchanged. These data 

sets have their number of samples as 𝑁 = 1000, and by 

doing so we will examine the results of tracking by repeating 

the same procedure. Here, the expectation is that the second 

tracking would be closer to the speed centers of new data set 

than the first tracking. For Data Set 2, estimation of mean 

values and the overall system’s corrected speed centers are 

as follows: 

 

�̂�1 = 54.9107     �̂�2 = 74.8072     �̂�3 = 105.2616 

 

�̂�𝑐𝑜𝑟1 = 53.9121     �̂�𝑐𝑜𝑟2 = 71.9633     �̂�𝑐𝑜𝑟3 = 103.1484 
 

The MMSE of mean estimation of Data Set 2 is 0.1561. 

Again, the estimation is very close to the real values. Also, 

the MMSE of each speed center’s estimation of Data Set 2 

are 0.0302, 0.0431, and 0.0828, respectively. As seen from 
 

 
 

Figure 1. CDF plots of three data sets 
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Figure 2. PDF plots of three data sets 

 

results of tracking, corrected mean values are not 

linearly calculated by simply taking the number of 

samples in data sets. It is also observed that tracking 

represents real traffic scenarios better since the new data 

sets have more effect in the evaluation of the current 

estimates even though they bear less number of samples. 

It is obvious that if the initial estimates of the firstly 

received data are more accurate, then the results are 

closer to the real values. The estimation of first speed 

center has more error than the estimation of the second 

speed center. Thus, the second one has corrected mean 

values closer to its former estimation (50.1489) than 

the corrected version of the first mean value’s closeness 

to its former estimation (69.9231). Data Set 3 also has 

the sameparameter values with Data Set 2. Estimation of 

its mean values and corrected mean values of the overall 

system that consists of all three data sets including the 

results of first tracking are as follows: 

 

�̂�1 = 54.6585     �̂�2 = 75.3391     �̂�3 = 105.0514 
 

�̂�𝑐𝑜𝑟1 = 54.2267     �̂�𝑐𝑜𝑟2 = 74.7701     �̂�𝑐𝑜𝑟3

= 104.6992 
 

The MMSE of mean estimation of Data Set 3 is 0.2342. 

As expected, new corrected values of speed centers are 

higher than the former ones. The illustration of the change in 

mean values and their kernel weights and variances of data 

sets can be observed in Figs. 1 and 2. 

In the second example, only kernel weights will change 

and we will track their values. Data Set 4’s kernel weights 

for 𝑁 = 1000 number of samples are given as follows: 

 

𝛼1 = 0.5     𝛼2 = 0.4     𝛼3 = 0.1 

 

Since in our case N-R Method’s MMSE is less than linear 

search one, estimation of kernel weights and their tracking 

are as follows: 

 

�̂�1 = 0.5154       �̂�2 = 0.3863          �̂�3 = 0.0983   
 

�̂�𝑐𝑜𝑟1 = 0.3961     �̂�𝑐𝑜𝑟2 = 0.4027      �̂�𝑐𝑜𝑟3 = 0.1466   
 

The MMSE of kernel weights estimation of Data Set 4 is 

4.2658 × 10−4. As seen from corrected kernel weights 

results, the error of each values of first data set’s estimation 

is correlated with final calculated values. The difference 

between Data Sets 1 and 4 can be seen in Figs. 3 and 4. 
) 

 
 

Figure 3. CDF plots of Data Set 1 and Data Set 4 
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Figure 4. PDF plots of Data Set 1 and Data Set 4 

In the last example, all parameters’ values of Data 

Set 1 are changed, and their tracking is calculated for 

𝑁 = 1000 sample number. The estimation of mean 

values via PDA and the estimation of kernel weights and 

variance values with N-R Method including assumed 

sample system parameters are given in Table I. Also 

tracking results of Data Set 5 are shown in the table. The 

MMSE of mean estimation is 0.2609 and the MMSE of 

kernel weight estimation is 1.6213 × 10−4. As seen 

from all examples, the system has performed well for 

not only the change of a single parameter but also for the 

change of all parameters. The PDF and CDF plots of 

Data Sets 1 and 4 are shown in Figs. 5 and 6. 

 

4. Assessment 
 

The system is tested with three different examples and 

for all three, it performed well by giving out the desired 

results. Chosen speed values are relatively middle and high 

speed levels for driving standards. The model was also 

examined in low and high speed values, and it performed 

well for estimations and their tracking. In addition to the 

work in [4], this work dealt with not only estimations of 

kernel weights, mean values and variance values but also 

their tracking. While in estimating variances, N-R Method 

reaches the results very quickly and its performance is 

comparable to the linear search method results. For example, 

for every estimation process of each variance value, linear 

search method needs more than 100 thousand 

multiplications to get maximum values in (8), while N-R 

Method reaches maximum value in less than 10 iteration 

even though its evaluation needs some heavy computation 

[4]. Scalar KF with scalar state - scalar observation 

generality level has achieved preferred outcomes instead of 

just linear calculations of two estimation results.   

 
Table 1. Example 3 Parameters, Results of Estimation and Tracking 

 

Parameter # \ Name 𝝁 𝝈𝟐 α �̂� �̂�𝟐 �̂� �̂�𝒄𝒐𝒓 �̂�𝒄𝒐𝒓 

1 55 5+2.75 0.1 54.7625 6.0102 0.0918 53.7797 0.1838 

2 75 6+3.75 0.3 74.9063 12.3964 0.2985 72.0373 0.3523 

3 105 7+5.25 0.6 105.4424 19.1120 0.6096 103.3024 0.4331 

 

 
 

Figure 5. PDF plots of Data Set 1 and Data Set 5 
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Figure 6. CDF plots of Data Set 1 and Data Set 5 

 

By using both Netwon-Raphson and Linear Search 

methods, average running time for parameter 

estimations of old data and new data, and their tracking 

is approximately 2 minutes and 10 seconds. However, 

here, estimation of the same parameters are made twice 

to compare these two methods. As mentioned in Section 

I, although Newton-Raphson method has computational 

complexity, it is faster than Linear Search method. If we 

use only Newton-Rapson method to estimate old data 

and new data, then perform the tracking, the average 

running time reduces to approximately 55 seconds. The 

computer used has a 1.70 GHz CPU, 4.00 GB RAM, 

and 128.00 GB memory.  

The simulation results indicate that the error for 

mean estimation is less 0.261, while it is less than 0.002 

for kernel weights when N-R Method is used. Here the 

variances are calculated as intermediate variables in 

estimating the kernel weights. These error rates are 

considered to represent multilane traffic condition 

accurately when compared with other studies in the 

literature such as [14] and [15]. We can use the 

following mean-percentage error formula that is used in 

[14] to compare error rates as 

 

𝐸𝑀𝑃𝐸 =
1

𝑀
∑ |

𝛼𝑖�̂�𝑖

𝛼𝑖

|

𝑀

𝑖=1

                                                     (14) 

 

Here, 𝑀 is the number of total speed centers and it is 

equal to 3 in the current study. 

The error in [14] is around 13% and the error in [15] 

is around 10%. Meanwhile, the error rate of mean 

values in this study reaches a maximum value of 0.11% 

when (20) is used. If we modify the equation (20) for 

error rate of kernel weight estimation, its maximum 

becomes 2.04%. As seen in the Section III, for different 

data sets and examples (5 data sets for 3 different 

examples), the error values do not change much and it is 

sufficiently less than the prior art. Thus, by using the 

proposed approach, an accurate multi-lane traffic 

density estimation and its tracking are realized. 

 

 

5. Conclusion and Future Study 
 

Traffic density estimation and its prediction play a crucial 

role in managing the traffic on the roads. The overall 

outcome prevents the drivers from traffic congestion and 

wasted-time and therefore is very beneficial to both the 

drivers and the management bodies of municipalities. In this 

study, multi-lane traffic density estimation has been 

conducted by estimating the speed centers, bandwidths, and 

kernel weights of clusters, which represent a group of 

moving vehicles in a given road and lanes. For this, the PDF 

of the input data is found by implementing Kernel Density 

Estimation. Then Kolmogorov-Smirnov Test is used to find 

empirical CDF. Thereafter, mean values are estimated via a 

peak detection algorithm and then variance values and kernel 

weights are estimated successively by using separation of 

parameters property of nonlinear Least Square Method that 

is applied with linear search method and Newton-Raphson 

approaches. As an extension to [4], for the same road, 

tracking of former and new estimations with less amount of 

data is determined by using Scalar Kalman Filter with scalar 

state - scalar observation generality level. The roads’ traffic 

density estimation is then updated with the newly calculated 

values. Three different sample cases representing a) change 

in speed centers, b) change in kernel weights, and c) change 

in all parameters, i.e. mean values, kernel weights, and 

variance values are analyzed in order to validate the 

proposed model. It is observed that the proposed estimator 

and the tracking algorithm perform very well when 

compared with the state of the art. This current study can 

further be extended to the prediction of the multi-lane traffic 

density for a given time interval, say daily or weekly. 
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