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Introduction

Ensuring the secure planning of power systems has become an important and critical 
matter in recent years, along with the development of smart and complex systems [1]. 
Distributed generations (DGs) are new technologies supporting the evolution of smart 
distribution grids. These units sensibly contribute to increased system reliability and en-
hanced power quality metrics [2]. The most general kinds of DGs are the renewable-based 
and conventional diesel-based units [3]. As societies are faced with environmental and 
economic hurdles ahead of soaring energy demands, deployment of green energy tech-
nology is now at the center of attention. Furthermore, significant technical problems 
such as improving the voltage profile and minimizing the power loss are contemplated 
as DG-driven technical achievements. 

The role of wind turbines (WTs) in minimizing power losses and improving the voltage profile 
has been carefully assessed in the literature [4]. The main concern in regard of green ener-
gy technologies, such as WTs, has to do with their intermittent power generation. To avert 
such technical flaws, distribution network operators (DNOs) need to establish efficient tools 
to investigate existing uncertainties. There are different approaches for accommodating the 
uncertainties of distribution networks. The Monte Carlo simulation (MCS) technique, although 
portraying a high-resolution and precise manner, is a high computational approach [5]. Sce-
nario tree modeling is one of the best techniques to include the impact of uncertainties. This 
approach reduces the computational burden of the analyses and maintains an adequate ac-
curacy of the computation procedure [6].
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ABSTRACT

This study presents an efficient approach for determining the optimal locations of wind turbines (WTs) in distribution systems, which considers 
the existing uncertainties in the power generation of WTs and the load demand of consumers. The daily load profiles of the seasonal and 
geographical-dependent behaviors of WTs are also considered. The proposed probabilistic approach is based on scenario tree modeling, and 
each scenario is assessed in regard to power loss minimization. Then, the TOPSIS (technique for order preference by similarity to an ideal solution) 
method is adopted to regulate the optimal placement of WTs considering the average value and the standard deviation of active power losses 
as possible attributes. This approach enables a multi-attribute analysis of the search space to yield a more efficient solution. Detailed simulation 
studies, conducted on IEEE 33-bus test system, are utilized to examine the effectiveness of the proposed method. The results of this study are 
discussed in depth.
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Several studies have focused on optimizing the impacts of 
renewable energies in distribution networks. The authors 
have presented a probabilistic model of WTs and photo-
voltaics (PV) comparing their possible impacts [7]. The re-
sults, based on this approach, have been compared to that 
of the symmetric two point estimate method (S2PEM), the 
Gram-Charlie method, and the Latin hypercube sampling 
method. Probabilistic operational management of a microg-
rid was investigated [8]. A self-adaptive gravitational search 
algorithm was utilized to tackle the optimization proce-
dure. A multi-objective programming method is proposed 
for reserve and energy planning of intelligent distribution 
systems [9]. A probabilistic load flow method was devised 
based on the PEM [3]. In a long-term fashion, analyzed the 
incorporation of WTs based on a combined MCS method 
and market-based optimal power flow (OPF) approach [11]. 
Authors have presented efficient methods for probabilistic 
calculation of wind energy injections to distribution systems 
[12]. This aim is pursued based on MCS and particle swarm 
optimization (PSO) techniques. Although a considerable 
effort has been dedicated in uncertainty analyses of inter-
mittent wind energy generation and the load profile of the 
network, their concurrent analyses have not been tailored 
accurately. 

This study aims at establishing an efficient probabilistic ap-
proach to determine the optimal location of WTs in distri-
bution systmes. In this manner, the existing uncertainties in 
both power generation of the WTs and load demand of the 
consumer are modeled with suitable probability density func-
tions (PDFs). Daily load profile for each season and the geo-
graphical-dependent behavior of WTs are taken into account 
as well. The proposed probabilistic approach deploys scenar-
io tree modeling within which each scenario is investigated in 
regard of power loss minimization. Afterwards, the technique 
in order of preference by similarity to ideal solution (TOPSIS) 
is triggered to regulate the optimal placement strategy based 
on the average value and the standard deviation of the ac-
tive power losses. As can be seen, a multi-attribute analysis of 
the search space is contemplated to yield in a more efficient 
solution. Detailed simulation studies, conducted on IEEE 33-
bus test system, are deployed to scrutinize the effectiveness 
of the proposed approach. 

This paper continues as follows. The uncertainties which are in-
volved in the proposed probabilistic approach are introduced 
in section II. The mathematical skeleton of the proposed place-
ment approach is thoroughly addressed in section III. The eval-
uation of the model with a case study is described in section IV. 
Section V eventually concludes the manuscript. 

Uncertainity Modeling

As mentioned earlier, the uncertainties in the load demand pro-
file and the generated power of WTs are considered here. These 

profiles are extracted on an hourly basis for each of the seasonal 
periods. Each of these uncertainties is modeled as follows.

Load Demand Uncertainty

The amount of demand, which is consumed in each hour needs 
to be forecasted. Generally, it is modeled with a normal PDF 
[13]. The following representation is considered:

      (1)

 

Here, s
hD is the power demand. Also,  and  represent 

the mean and standard deviation of demand, respectively. 
Scenario tree modeling is deployed for the uncertainty han-
dling process. The states number is sensibly designated, as 
the number of small intervals decreases the modeling accu-
racy while the number of large intervals increases the com-
putational burden and provokes problem complexity. The 
mean value of each state is used to compute the variables of 
output in that specific state. The probability of each interval 
is designed as follows:

      (2)

 

Where, DL1 and DL2 are respectively, the minimum and maxi-
mum bounds of load demand at each interval. 

Wind Turbine Modeling

In this study, the WT intermittent power generation is demon-
strated as a Rayleigh PDF. A Rayleigh PDF is a special case of 
Weibull PDF in which the shape index is equal to 2. Such an 
assumption is widely applied in similar studies as a appropriate 
explanation of wind speed performance [13]. This behavior is 
represented as follow:

      (3)

 
 

Where, k is the shape factor which is equal to 2 (k=2). s
hV and 

s
hC denote the wind speed forecasted value and its scale fac-

tor, respectively. Therefore, the scaling index can be modeled 
as follows:
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(4)

  (5)

The generated power of a typical WT in each hour is deter-
mined based on a WT power curve. This feature is interpreted 
as follows: 

      (6)

 

In (6), Pw
r speaks to the rated power of WT and  is its gen-

erated power in hour h and season s. As well, c
outv  is the cut-out 

speed, c
inv is the cut-in speed, and ratedv  is the rated speed of 

the WT. 

The output power in each interval is achieved by the mean val-
ue of each state. The probability of each interval is calculated 
as follows:

      (7)
 

Where, VL1 and VL2 represent the lower and upper bounds of 
each interval, respectively. Moreover, C stands for the scale fac-
tor and Vmean is the mean value of wind speed.

Scenario Tree Formation

Scenario tree modeling is deployed to define a set of scenarios 
in the optimal placement of WTs. The combination of load de-
mand and wind speed states end in different scenarios. Each 
scenario contains two levels of demand value and wind gen-
eration accompanied with a particular probability value. The 
probability of each scenario is calculated based on (8) whose 
terms are calculated in (2) and (7). As shown in (9), the cumula-
tive summation of all scenarios is equal to one.

  (8)

 (9)
  

Where,  is the probability of each scenario and SN is the 
number of scenarios.

The Proposed Methodology

Objective Functions

As the proposed approach establishes a TOPSIS-based multi-at-
tribute approach, two objectives are determined as the main 
attributes of the proposed study. In this context, the first ob-
jective function in (10) minimizes the active power losses in 
distribution feeders and the second one seeks a solution with 
the minimized variation of the active power losses. It will be 
assumed that the total power loss of the network is obtained 
as follow: 

   (10)
 

Where,  and K denote the set and index of branches, respec-
tively. kI and kR  show the current magnitude and resistance of 
branches, respectively. By determing of the active power losses 
and probability of each scenario, the expected value (EV) and 
standard deviation (SD) of different scenarios in each hour are 
calculated as follows:

(11)
  

(12)
 

Here, (loss)sP represents the distribution system power losses 
in scenario s. Both (11) and (12) are considered as the inves-
tigated attributes in the proposed TOPSIS-based probabilistic 
approach. Accurate forecast of wind power generation or load 
demand is important for distribution companies. An erroneous 
estimation ends with an additional energy transfer from the 
substation transformer, which poses monetary losses. Addi-
tionally, this point ends in technical hurdles. Therefore, SD of 
the power losses is recognized as one of the attribute inaccu-
rate evaluations of the results. The minimum value contribute 
to a better solution in regard of WT placement. 

Constraints

In each of the scenarios, the nodal power balance should be 
satisfied. This necessity is denoted based on the constraints 
represented in (13) and (14). These equations are modified to 
include the power generation of WTs, load demands, and the 
transferred power from the main substation.

 (13)

 (14)

Where, , ,i h s
WTP  is active power generation of WT. , ,i h sLP  and 
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, ,i h sLQ  represent the active and reactive power loading of each 

bus, respectively. ,h s
V indicates the bus. Finally,  and ijY  

show the phase angle and magnitude of the feeder’s admit-

tance, respectively.

In this study, some other constraints, such as the permissible 

range of voltage magnitude, the rated capacity of substation 

transformer, and the permissible range of apparent power flow 

through each distribution feeder, have been considered. 

TOPSIS Approach

Prioritizing the candidate buses for the optimal probabilistic 
placement of WTs is assessed based on the TOPSIS approach. 
In this manner, a three-level hierarchy is shown in Figure 1. As it 
can be seen, the objective is located in the first level, attributes 
are located in the second level, and the third level is considered 
as alternatives (candidate buses). Regarding the power losses 
obtained at each scenario and the standard deviation of the 
results as the attributes, the following steps are conducted.

Step (1): Making a decision matrix based on an entropy technique 
for three alternatives and two attributes as shown in Table. 1.

In this table, EV and SD are the attributes. Furthermore, the 
three candidate buses are the alternatives. The average values 
of EV and SD at each candidate bus can be calculated as fol-
lows:

 (15)

 

 
 

 

Figure 1. The three-level hierarchy for sorting the possible candidates

Table 1. EV and SD of power losses in spring season 

Spring

Bus 16 Hour 1 2 3 4 5 6 7 8 9 10 11 12

EV 13.80 11.04 10.26 8.39 9.01 8.97 13.37 17.77 22.91 25.20 26.47 29.13

SD 2.35 1.81 1.63 1.57 1.56 1.55 2.09 2.85 3.89 4.36 4.63 5.20

Hour 13 14 15 16 17 18 19 20 21 22 23 24

EV 36.58 49.55 68.49 105.45 120.57 125.32 130.42 109.27 82.09 53.60 34.04 14.01

SD 6.71 9.07 12.30 18.12 20.19 20.67 20.30 16.83 12.60 7.96 5.54 2.42

Bus 25 Hour 1 2 3 4 5 6 7 8 9 10 11 12

EV 15.74 12.57 11.54 9.01 9.80 9.81 15.39 20.94 27.48 30.36 31.93 35.15

SD 1.91 1.51 1.35 1.02 1.13 1.12 1.85 2.53 3.36 3.71 3.91 4.32

Hour 13 14 15 16 17 18 19 20 21 22 23 24

EV 44.05 58.66 80.42 122.04 136.87 140.89 142.81 119.12 89.18 57.51 37.40 15.86

SD 5.42 7.19 9.84 14.86 16.62 17.03 16.94 14.08 10.51 6.64 4.42 1.92

Bus 32 Hour 1 2 3 4 5 6 7 8 9 10 11 12

EV 13.90 10.92 9.85 7.71 8.34 8.36 13.07 17.51 22.84 25.25 26.61 29.44

SD 2.51 1.97 1.71 1.23 1.36 1.37 2.39 3.28 4.33 4.77 5.02 5.55

Hour 13 14 15 16 17 18 19 20 21 22 23 24

EV 37.32 50.90 70.58 108.81 124.13 128.81 133.37 111.61 83.71 54.54 34.73 14.18

SD 6.91 9.08 12.06 17.54 19.40 19.84 19.43 16.15 12.22 7.60 5.40 2.52
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   (16)

    

Step (2): Decision matrix [A] is normalized based on (17):

  (17)
 

Where, lua is a decision matrix element and m is an alternatives 
quantity.

Step (3): Making the matrix named weighted normalized as X.

 (18)

  (19)
 

It should be noted that each of the two attributes in this study 
takes a similar weight. Each attribute’s weight is considered to 
be 0.5 (W1=W2= 0.5).
Step (4): The best and worst answer regarding each attribute 
are determined in this step. uX + as the best answer is measured 
for the positive and negative criteria as the maximum and min-
imum values. Also,  as the worst answer is measured for the 
positive norm as the minimum value and for the negative norm 
as the maximum value.

 
(20)

 
(21)

Where, u and l show the u-th attribute and l-th alternative, re-
spectively.

Step (5): In this step, the distance of each alternative with the 
best and worst answers are modeled by lS + and  as follows:

 
(22)

     (23)
 

Step (6): The mean distance between worst answer and each 
alternative are modeled as follows:

     (24)
 

Step (7): Sorting the alternatives by considering the values 
which obtained as lC . It should be noted that a higher lC  
with its higher distance with worst answer is selected as candi-
date bus (the most effective alternative).

Model of Evaluation on A Case Study

The proposed probabilistic approach is tested on IEEE 33-bus, 
depicted in Figure 2. The load point’s reactive and active pow-
ers and the branches information are taken from [14]. Gath-
ered daily load profiles corresponding to different seasons are 
shown in Figure 3. Considering the typical distribution system 
in its basic structure, the total peak demand is equal with 3.715 
MW and 2.3 MVA. As it is clearly seen, peak hours are different 
in different seasons. The mean value of normal PDF is taken 
equal to the forecasted value. Moreover, the standard devia-
tion of load demand is supposed to be equal to 5%. Bus 1 is 
supposed to be the substation bus and linked to the sub-trans-
mission grid. Three different candidate buses are nominated 
as the placement locations of WTs. These buses include 16, 25, 
and also 32. Since there is a limited budget for placement of 

Figure 2. Single line diagram of IEEE-33 bus test system

Figure 3. Daily load curves at different seasons
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WTs, only one WT is implanted on the network. WTs are oper-
ating in unity power factor, i.e., they have not participated in 
reactive power exchanges. The WT rated capacity is assumed 

as 500 kW. Regarding the power curve specifications, the cut-in 
speed is equal to 3 m/s, rated speed is determined as 12 m/s, 
and cut-out speed is denoted as 25 m/s. The average hourly 
wind speed at each season is shown in Figure 4. 

Table 1 shows the EV and SD of power losses attained in differ-
ent buses and at each hour of a day in spring season. Due to 
hourly differences in wind speed and load demand, different 
values of EV and SD are attained. For instance, at hour 16, load 
demand is at 80% of peak load and the wind speed’s mean val-
ue is 9.2 m/s. Accordingly, the EV and SD of power losses in bus-
es 16, 25, or 32 are attained as (105.45, 18.12), (122.04, 14.86), 
and (108.81, 17.54), respectively. These differences reflect the 
impact of WT placement in different buses. As shown in Table 
2, three candidate buses have different results considering the 
average values of EV and SD. It has been earlier elucidated that 
the optimal placement solution should portray the minimum 
EV as well as the minimum SD.

Based on TOPSIS approach, the priorities of WT placement can-
didates are determined based on (24). In this way, the results 
for each season are presented in Table 3. Moreover, the largest 
distance from the worst answer is considered as the final rank-
ing. Consequently, this bus is designated as the best location 
for installation. Therefore, bus 25 is selected as the best installa-
tion location of WT satisfying the minimum power losses. 

Also, Table 4, shows the effect of installed WT on the ex-
pected mean power loss at each season. In this table, base 
plan represents the basic structure of the test case without 
placing WT. This solution is in line with the minimum power 
losses in the network and portrays a minimum standard de-

Figure 4. Mean values of wind speed in different seasons

Figure 5. Optimum results for PDF of power losses

Table 2. Attributes and alternatives in WT placement

Bus EVaverage SDaverage

Spring 16 46.9073 7.7619

25 53.1108 6.3785

32 47.7805 7.6630

Summer 16 85.4810 13.2103

25 93.9387 11.2007

32 87.0475 12.8606

Autumn 16 70.7984 11.8479

25 81.0212 9.8031

32 72.7659 11.5566

Winter 16 65.9510 10.8804

25 73.9491 8.8625

32 67.3537 10.4717

Table 3. Ranking of the candidate buses for WT placement 
based on TOPSIS approach

Bus Cl Final Rank

Spring 16 0.3982 2

25 0.6018 1

32 0.3904 3

Summer 16 0.3721 3

25 0.6279 1

32 0.4087 2

Autumn 16 0.4241 2

25 0.5759 1

32 0.4207 3

Winter 16 0.3671 3

25 0.6329 1

32 0.4278 2
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viation of power losses throughout the investigated hours on 
a yearly base. In this regard, the PDF of power losses for each 
season considering the installed WT at bus 25 are depicted 
in Figure 5.

Conclusion

A probabilistic approach was devised for WTs optimal place-
ment in distribution systems. In this process, the uncertain-
ties in both load demand and power generation of wind tur-
bines were accommodated through the proposed strategy. 
Suitable PDFs were constructed for representing the uncer-
tain nature of these variables. Scenario tree modeling was 
applied for proper segmentation of the PDFs and yielding to 
a set of scenarios. This approach resulted in a number of sce-
narios to assess the established approach in a probabilistic 
manner. It was shown that, each of the scenarios results in 
different EV and SD of power losses. Thus, the placement lo-
cation of WT was affected in different seasons and candidate 
installation buses. Accordingly, the TOPSIS approach was 
deployed to determine the optimal installation buses of WTs 
considering the EV and SD values as the decision attributes. 
It was shown that the three installation candidate buses as 
the possible alternatives contribute to different trends in the 
reduction of EV and SD values. The proposed approach al-
located the optimal installation buses of WTs based on the 
largest distance from the worst answer. Consequently, the 
minimized EV and SD values were granted. These remarks 
are recognized as impressive factors to be concerned by the 
DNOs in renewable-based DGs optimal placement in distri-
bution systems. 
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