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Abstract: Respiratory sounds, i.e. tracheal and lung sounds, have been of great interest due to their diagnostic values as 

well as the potential of their use in the estimation of the respiratory dynamics (mainly airflow). Thus the aim of the study 

is to present a new method to filter the heart sound interference from the tracheal sounds. Tracheal sounds and airflow 

signals were collected by using an accelerometer from 10 healthy subjects. Tracheal sounds were then pre-processed by 

Recursive Least Square - Adaptive Noise Cancellation (RLS-ANC) filter to remove background noise. Gabor time-

frequency expansion was used for both heart sound localization and reduction problem. In the first step of filtering, RLS-

ANC successfully filtered out the broad - band ambient noise. Reconstruction of tracheal sound was achieved from 

modified Gabor coefficients without heart sound noise. Visual inspection and quantitative analysis demonstrated that 

Gabor time-frequency masking with RLS-ANC filters provides successful tracheal sound signal separation. 

Keywords: tracheal sound filtering, Gabor expansion, time-frequency filtering. 

 

1. Introduction 
 

Respiratory sounds, i.e. tracheal and lung sounds 

have been of great interest due to their diagnostic values 

as well as their potential to be used in the estimation of 

the respiratory dynamics (mainly airflow) [1,2]. The 

first step to utilize the respiratory sounds is to remove 

any noise contaminating the valuable spectra-temporal 

bands of the signals, such that high energy heart sounds 

interfere with the low energy respiratory sounds at the 

low frequency band [2]. Heart sound interference should 

be removed from the respiratory sound signal 

completely and also efficiently, i.e. without losing or 

harming the respiratory sound signal overlapping with 

the heart sound effected frequency band. This is required 

due to two important factors: 

i. Low energy band of the respiratory sound is 

proved to contain valuable diagnostic information [1], 

ii. In order to benefit from respiratory sounds to 

estimate various respiratory parameters, mainly 

respiratory airflow and breathing frequency, it is 

required to work on the clean respiratory sound signal 

with distinguishable inspiration and expiration parts [2-

4].  

Statistical signal processing methods were proposed 

to filter out any noise in the respiratory sound signal, as 

well as, different approaches based on adaptive filtering 

[5-7] and time-frequency filtering [7,8] were applied to 

remove the heart sound noise without altering the 

respiratory sound signal. All these promising methods 

achieved a significant degree of success. However,  

 

 

although heart sounds were localized perfectly with these 

methods, filtering of the respiratory sound signal was still on 

debate. Moreover, implementations of these methods were 

not straight forward and needs careful computerization, thus 

not suitable for automated diagnosis systems. 

The need for a fast and effective method can be overcome 

by the Gabor type time-frequency representation of the 

respiratory sounds. Gabor representation of a signal provides 

a convenient means to modify the signal in the time-

frequency domain. By adjusting the magnitude of the Gabor 

coefficients in a prescribed manner and reconstruction of the 

modified signal using the inverse Gabor expansion, time-

frequency filter is easily implemented. In our previous study 

[9], time-frequency masking technique based on Gabor 

expansion was applied successfully for the respiratory sound 

noise reduction problem. However, in [9] tracheal sound 

signal was used from database as a respiratory sound signal. 

Given the fact that tracheal sounds from database are pre-

processed and cannot represent the real life situation, raw 

recorded data should be processed. However, raw respiratory 

signals include not only heart sound signals but also broad 

band ambient noise. Therefore, the goal of this paper is to 

evaluate the use of Recursive Least Square - Adaptive Noise 

Cancellation (RLS-ANC) filter to remove background noise 

and to assess the effectiveness of Gabor time-frequency 

masking techniques for heart sound noise localization and 

reduction problem. Transient noises such as speech and 

impulsive noise are out of scope of this study.  
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2. Materials and Methods 

 

2.1. Discrete Gabor Expansion 

 

The Gabor expansion and Gabor transform is the time 

domain - to - time-frequency domain linear and two sided 

transformation of the signals. By applying sampling 

theory to continues-time Gabor expansion, discrete 

Gabor expansion of a finite (or periodic) discrete-time 

sequence with length 𝐿 can be defined as [10]: 
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where synthesis function 𝑔𝑚,𝑛(𝑘) is the 𝑚∆𝑀 time 

shifted and 𝑛∆𝑁 frequency modulated version of the 

Gabor window function 𝑔(𝑘) also called logons or 

atoms: 
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In Eq (2) ∆𝑀 and ∆𝑁 are time and frequency 

sampling intervals, respectively. 𝑀 and 𝑁 are the number 

of sampling points in time and frequency domains 

(∆𝑀𝑀 = ∆𝑁𝑁 = 𝐿). Ideally, 𝑔(𝑘) should be well 

localized in both time and frequency (i.e., should decay 

rapidly outside a small region in the time-frequency 

space), in which case the coefficients 𝑐𝑚,𝑛 give good 

indications of the content of the signal at time 𝑚∆𝑀 and 

frequency 𝑛∆𝑁. Originally, the synthesis function was 

chosen by Gabor as a Gaussian window, because it 

maximizes the concentration in the time-frequency plane 

The existence of (1) has been found to be possible 

for arbitrary 𝑓(𝑘) only for ∆𝑀∆𝑁 ≤ 𝐿 (or 𝑀𝑁 ≥ 𝐿). 

This is called the oversampled case and the synthesis 

functions are no longer linearly independent. At the 

critical sampling case ∆𝑀𝑀 = ∆𝑁𝑁 = 𝐿, the logons are 

linearly independent, but are not orthogonal in general 

(Balian-Low obstruction) [10,11]. This means that the 

Gabor coefficients 𝑐𝑚,𝑛 are not simply the projections of 

𝑓(𝑘) onto the corresponding logons 𝑔(𝑘) (i.e. the 

analysis and synthesis windows cannot be the same). 

According to [12] Gabor coefficient 𝑐𝑚,𝑛 is 

computed by the inner product rule for projecting 𝑓(𝑘) 

onto 𝛾(𝑘) , auxiliary function, or bi-orthogonal window, 

i.e., 
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where again analysis function 𝛾𝑚,𝑛(𝑘)  is the 𝑚∆𝑀 time 

shifted and 𝑛∆𝑁 frequency modulated version of the 

Gabor window function 𝛾(𝑘): 
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Analysis function 𝛾(𝑘), is also called dual window 

function of the synthesis window function since they can be 

interchangeable. If the windows 𝑔(𝑘) and 𝛾(𝑘) are chosen 

biorthonormal, transform is called an orthogonal-like Gabor 

transform [10] and they validate the biorthonormal condition 
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where 0 ≤ 𝑚 ≤ ∆𝑁 − 1 and 0 ≤ 𝑛 ≤ ∆𝑀 − 1. Then the 

analysis formula given by Eq (3) allows the computation of 

the Gabor coefficients and the synthesis formula in Eq (1) the 

reconstruction of the signal 𝑓(𝑘). Zak transform can be used 

to compute the biorthonormal window 𝛾(𝑘) associated to a 

given synthesis window 𝑔(𝑘). From an implementation point 

of view, this solution is not fully satisfactory since the 

computation of the biorthonormal window 𝛾(𝑘) is 

numerically unstable. So in general, some degree of 

oversampling is considered, which introduces redundancy in 

the coefficients, in order to "smooth" the biorthonormal 

window 𝛾(𝑘), for the sake of numerical stability. These 

considerations are closely connected to the theory of frames 

[13].   
 

2.1.1 Computation of discrete orthogonal-like Gabor 

expansion 
 

Eq.(1) and Eq. (3) can be expressed in the matrix form 

respectively as 

 

f Gc    (6) 
*c fW    (7) 

 

where the sequence f is expressed in the form of a column 

vector: 
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G denotes the 𝐿 × 𝑀𝑁 Gabor synthesis matrix having 

𝑔𝑚,𝑛 as its (𝑚 + 𝑛𝑀)-th column, such that 
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The Gabor expansion coefficients 𝑐𝑚,𝑛 are written in the 

form of a column vector c of length 𝑀𝑁: 

 

0,0 1, 1

T

M Nc c  
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W∗ is the complex conjugate of 𝐿 × 𝑀𝑁 analysis 

matrix constructed as same as G 

 

Eq.(5) can also be expressed matrix-vector notation as: 
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where I is identity matrix and H is a 𝑀𝑁 × 𝐿 matrix 

constructed by [14]: 
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where 0 ≤ 𝑚 ≤ ∆𝑁 − 1 and 0 ≤ 𝑛 ≤ ∆𝑀 − 1. 

 

As it is explained earlier, in the oversampling 

case, linear system given Eq.(5) is underdetermined and 

solution that making the shape of 𝛾(𝑘) and 𝑔(𝑘) as 

close as possible in the least square sense can be found 

[10]: 
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This solution is then equated to the solution of the 

system Eq.(10) via pseudo-inverse method, i.e., the 

window satisfying Eq.(10) with minimal norm is given 

by: 
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Eq.(14) says that regarding to the oversampling 

case, biorthogal analysis window function can be easily 

obtained once the synthesis function is set. Other 

conclusion can be drawn as the similarity between the 

pair of dual functions 𝛾(𝑘) and 𝑔(𝑘) is directly 

proportional to the oversampling rate. 
 

2.1.2 Denoising by Gabor expansion 
 

Gabor expansion can be used as a tool for a noise 

reduction, if either the noise components of the signal is 

well localized and occupies certain number of cells in 

time-frequency plane [15] or can be assumed that an 

independently identically distributed Gaussian noise 

[16]. Acquired respiratory sound signal is composed of 

many types of noise signals that needed to be filtered off. 

Heart sound signal can be considered as a periodic type 

noise signal since its location can be detected easily by 

any of linear time-frequency signal representations. 

However, a noise from an electronic measurement 

circuitry is usually Gaussian type white noise. 

 

Regardless of the type of the noise included in the 

signal, Gabor coefficients thresholding or modification 

can be methods used for the noise reduction. Depending 

on the noise level and statistical properties of the noise, 

different algorithms are constructed for different 

tresholding levels [15-17]. In [16] the denoising 

algorithm was presented in the case of Gaussian type of 

the noise signal, whereas in [15] time-frequency domain 

denoising methods were utilized. 

Gabor coefficients masking as denoising approach 

has a fairly simple algorithm. However, the care, that the 

analysis and synthesis window should be as close as 

possible, should be taken. Once the constraint of Eq.(11) 

is satisfied, it is easy to show that the modified Gabor 

coefficients are closer to the Gabor coefficient of the modified 

signal via transform Eq.(7) (Proof is in [15]). 

 

2.2. Gabor Representation of the Tracheal Sound 
 

2.2.1 Data Acquisition and preprocessing 
 

In this work respiratory sounds were acquired from 10 

healthy subjects in ranging age of 20 to 30 year-old. 

Respiratory sounds were recorded by 2 accelerometers (PCB 

353B16) placed over suprasternal notch and 3rd intercostal 

space posteriorly on the left. Respiratory air flow was 

measured by a pneumotachograph (Hans Rudolph RSS 100 

0-160 L/min) attached on a facemask (Respironics Spectrum 

medium size). Subjects were instructed to breathe quietly 

without making extra effort. The low-noise operational 

amplifier was used with the gain factor of 5000 for 

amplification of the raw sound signals. Preprocessing also 

included RC band pass filter with the bandwidth of 7.5 Hz. 

to 2500 Hz. The signals were then digitized by data 

acquisition board (NI PCI-6221 M 16-bits). The sampling 

rate was 10 kHz. Acquired signals were displayed and saved 

for processing by data acquisition software (NI LabVIEW 

full development system). 
 

2.2.2 Ambient noise filtering by RLS-ANC Adaptive 

Filter 
 

Acquired data did not only contain heart sound and 

respiratory sound signals but also were affected by the 

ambient noise and the noise from electronic components. It 

has been proved that ordinary band pass filters were not useful 

in terms of noise reduction in the respiratory sound [1, 5, 8]. 

Thus Recursive Least Squares Adaptive Noise Cancellation 

(RLC-ANC) was used to filter out the ambient noise in the 

respiratory sounds. 

The standard RLS adaptive filtering scheme consists of 

a finite-duration impulse response transversal filter and RLS 

algorithm, which upgrades the tap weights 𝑤𝑘 of the 

transversal filter in a recursive manner so that the cost 

function is minimized [18]. The details of the RLS-ANC 

algorithm can be found in [9]. As a reference noise signal, the 

unconnected accelerometer output was recorded. As the RLS 

adaptive filter is highly sensitive to numerical instability [18], 

the filter order severely affects the performance of the filter. 

In order to keep computational time as low as possible, RLS-

ANC filter order was chosen to be 8 on trial and error basis 

and the changes occurred at the spectrogram of the signals 

were observed. 𝜆 was set to 1 to be infinite memory. 
 

2.2.3 Gabor analysis of respiratory sounds 
 

After adaptive filtering, acquired tracheal sound signal 

includes both desired tracheal sound signal and heart sound 

noise. In this work, we used the generalized Gabor expansion 

for the respiratory sound signal modeling. For finite discrete-

time signals, Gabor synthesis and analysis equations are given 

in Eq.(6) and Eq.(7). 

For the synthesis function 𝑔(𝑘), we chose Gaussian type 

window in order to obtain well localized windows [11]. 

Below normalized Gaussian function is used: 
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where 𝐿 is the number of the data samples and 𝜎 is the 

standard deviation of the Gauss function 

Selecting the standard deviation highly depends on 

the wavelength and the line of sight of the signal to be 

detected. By increasing the wideness, the Gabor 

expansion emphasizes lower frequencies, whereas higher 

frequencies of the sound signals can be detected with 

narrow Gabor expansion windows. Therefore in order to 

detect low frequency content of the respiratory sound 

signal we tried relatively high values of 𝜎 and 256 point 

of the window length was found optimum on the heart 

sound signal frequency band. 

Biorthogonal sequence was computed using 

algorithms explained in section 2.1. Both the window and 

the biothogonal sequence are illustrated in Figure 1. 𝐿 =
10000 sample segment was used to compute Gabor 

coefficients and we considered oversampling case with 

𝑀 = 1000 and 𝑁 = 10000. The over sampling rate can 

be calculated as 𝑟 =
𝑀×𝑁

𝐿
= 1000. Therefore, due to such 

a high oversampling rate and pursuing orthogonal-like 

Gabor transform, both of the window functions are 

Gaussian type with different amplitudes. Once 

biothogonal 𝛾(𝑘) is determined by Eq.(14) and Eq (15), 

it is trivial to compute 𝑐𝑚,𝑛 by Eq.(7). 

 

4. Results 
 

Figure 2 shows the spectrogram of the typical 

recorded tracheal sound signal from one of the 

representative subject before ambient noise filtering and 

the same signal after RLS-ANC adaptive filter. Power 

spectral density (PSD) plots of the signals are shown in 

Figure 3. Since, our criterion of successful filtering was 

to have less coloured spectrogram, as it is shown in 

Figure 2, the spectrogram of the RLS-ANC filtered 

sound signal has less noise artefacts. Moreover, heart 

sound noise components are clearer in the RLS-ANC 

filtered signal than in the original sound signal. Thus 

filtering off the background noise attenuates the broad-

band noise component of the sound signals while  

 

 
 

Figure 1. (a) Normalized Gaussian window, 𝑔(𝑘) and (b) optimum 

biorthogonal window, 𝛾(𝑘). 
 

exposing more readily sound spectral content. Figure 3 

shows the decrease of the PSD in the whole frequency band 

of the tracheal sounds after the filtering. 

Broad-band noise elimination with adaptive filtering was 

very successful because the ambient noise was uncorrelated 

with sound signals and cannot be locally identified. 

However, this is not the case for heart sound signal. Heart 

sound signal can only be eliminated by the time-frequency 

representation of the respiratory sound signal. Thus our 

second approach to the denoising problem was to express the 

sound signals with linear time-frequency transform. 

Figure 4 shows the magnitude values of the Gabor 

coefficients, 𝑐𝑚,𝑛 of typical tracheal sound signal in a 

contour plot before and after denoising. Note that only the 

positive half of the frequency axis is shown. In Figure 4a, we 

see that Gabor coefficients are visible only at the frequencies 

where high energy heart sound signals are present. In other 

words, most of the Gabor coefficients are close to zero 

outside the noisy region in the joint time-frequency domain 

of the tracheal sound signal. This can be explained with two 

important facts. First, with the selection of the Gaussian 

window length the low frequency band of the respiratory 

sound signal is emphasized, and second higher intensities of 

heart sound made the Gabor coefficient matrix sparse. In 

other words, coefficients related to heart sound component is 

too high, so that respiration related coefficients are regarded 

as zero. This is based on the calculations of the Gabor 

coefficients, as discussed in section 2.1. Thus, the desired 

signal can be obtained from the noisy signal by masking the 

high amplitude Gabor coefficients. 

Figure 4b shows Gabor coefficients of the same signal 

segment after Gabor coefficient masking. As explained in 

section 2.1.2, applied masking technique is called soft 

clipping and used when the Gabor coefficients are sparse 

[16]. Heart sound reduction can be seen easily in both Figure 

4 and Figure 5, which shows the PSD of the signals before 

and after Gabor denoising. It can be observed that only high 

power heart sound components were affected  
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Figure 2. Typical representations of (a) raw recorded tracheal 

sound signal spectrogram, and (b) the spectrogram of the same 

signal after RLS-ANC adaptive filtering. 

 

from the denoising procedure, leaving other parts 

untouched. Figure 5 also includes the magnified low 

frequency part of the PSD, which emphasised that the 

tracheal sound signal was considerably decreased at the 

frequencies up to 150 𝐻𝑧. This clearly demonstrates the 

effectiveness of the masking technique. 

 

5. Conclusions 
 

We removed the background noise and heart sound 

noise in the tracheal sound signal successfully by RLS-

ANC adaptive filtering, generalized biorthogonal Gabor 

expansion and Gabor coefficient masking method. Both 

heart sound signal localization and filtering were done 

by the Gabor expansion. The noise filtering in the 

biomedical signals by Gabor expansion was done in the 

previous studies [19]. Here we applied the Gabor 

expansion to tracheal sound filtering problem and 

achieved the noise-free traceal sound signal at the end. 

It is proved that the respiratory sound signal is very well 

modelled by Gabor coefficients. Although the 

respiratory sound as a time-varying signal covers very 

large area in the time-frequency domain, the heart sound 

as a noise signal has very distinctive location and can be 

easily processed by the Gabor expansion. The linearity 

of the Gabor expansion suggests the possibility of 

further processing of the respiratory sound signals. For 

instance, one may consider the cross spectral analysis 

between the tracheal sound signal and the lung sound 

signal. Furthermore, similar analysis can be carried out 

by the selection of the windows for the adventitious 

sound spectrum. Finally, comparing to our previous 

study [20], although the figures shows the similar 

results, in terms of the computational cost and 

simulation duration Gabor expansion technique is more 

superior than the spectrogram and adaptive filtering 

technique. 

 

 

 

 

 

 
 

Figure 3. PSD comparisons of the tracheal sound signals before and 

after RLS-ANC filtering. (Solid line represents PSD of the original 

signal; broken line represents PSD of the broad band noise filtered 

signal). 

 

 
 

Figure 4. Typical representations of Gabor coefficients 

(magnitudes) for (a) the tracheal sound segment after RLS-ANC 

filtering and (b) same segment after soft clipping (denoising). 

 

 
 

Figure 5. PSD comparisons of the tracheal sound signals before and 

after Gabor denoising. (Solid line represents PSD of the tracheal 

sound signal after RLS-ANC filtering, broken line represents PSD 

of the tracheal sound signal after Gabor denoising). Inserted 

subfigure is the magnified region between 0 –  200 𝐻𝑧.  
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