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ABSTRACT

This paper describes a novel approach for reducing the processing time of the histogram probabilistic multi-hypothesis tracker (H-PMHT) algorithm in 
video applications. Video data of flying vehicles is taken from surface to air, and a temporal difference-based technique is applied to video frames for 
meeting the intensity demands of H-PMHT algorithm. This technique also enables discrimination between objects and eliminates clutter. Variations 
between the structures of the standard and the improved version of H-PMHT algorithms are described. In addition, the improved H-PMPT is compared 
with the standard H-PMHT and another approved tracking algorithm to evaluate the performance and processing time reduction ratings.
Keywords: Improved H-PMHT, Pixel Wise Difference, Surface to air, Video Tracking

Introduction

TRACKING requires high precision and real-time applications. For sensors taking continuous 
and bulky data streams such as video data, real-time operation is difficult to achieve using 
whole sensor data. When conventional tracking algorithms are used for video object tracking 
real-time may be achieved, but only at the expense of some level of precision due to transfor-
mation of the data into a suitable measurement domain [1-3]. These transformations also take 
the physical shapes of the targets, which are projected onto the image frame, up to a level 
and convert them to point measurement, thus adding to measurement error. Coping with a 
high amount of data streams is necessary in order to reach high precision rates in video object 
tracking. Therefore, target shape and intensity-based algorithms get the edge on point-mea-
surement trackers [4, 5]. Reliable and uninterrupted track information is essential for most of 
the applications, especially in a background of a high clutter environment and a lack of sen-
sor capacity. In order to detect the target location from the data stream, high intensity pixel 
clusters should be searched from data streams, and it should be decided whether or not they 
emerge from target or clutter. H-PMHT is a feasible method for handling data streams, and for 
tracking objects reliably and uninterruptedly.

The H-PMHT is basically an Expectation Maximization (EM) based algorithm which was devel-
oped for target tracking in dense clutter environment by processing a considerable amount 
of data streams [6]. H-PMHT is a track-before-detect (TkBD) algorithm and entire video data 
is used as the measurement. It processes detection and tracking operations simultaneously. 
H-PMHT maintains tracking performance for low SNR values, where the target is not easily 
distinguished from the noise-cluttered background of any given frame. The original H-PMHT 
assumes that the signature of each target in the sensor frame area is known. In this particular 
case, the signatures are in the Gaussian distribution, and the means of these Gaussians are 
linearly related to the states of the targets. In imagery applications, the target signature is the 
physical shape of the target projected onto the image frame. This shape can be time-varying 
and complicated [7]. H-PMHT provides considerably satisfactory results for one dimensional 
and two dimensional applications [8-10]. In these applications spreading of the target inten-

https://orcid.org/0000-0002-5901-228X


122

Electrica 2018; 18(2): 121-132
Pakfiliz A.G. Reduction of H-PMHT Process Time

sities presents almost a linear-Gaussian distribution. Moreover, 
for non-linear and non-Gaussian applications a particular solu-
tion is presented in with particle filters. In addition, a video 
tracking application is presented in with a specially processed 
video data, and a modified H-PMHT, which is called H-PMHT 
with Random Matrices (H-PMHT-RM) [11, 12].

The main purpose of this study is to reduce the processing 
time of the H-PMHT algorithm without deterioration in per-
formance. For this purpose, we needed to obtain available and 
reliable measurement data in order to discriminate moving 
objects and represent them with a higher intensity area than 
the stationary background. Firstly, video data belonging to air 
vehicles is taken in true color (RGB) from surface to ground. 
Then a temporal difference processing technique is applied to 
filter moving objects from the stationary background. Thereby, 
proper data streams composed of moving objects and back-
ground are obtained for processing with H-PMHT.

Two important obstacles need to be overcome to reduce the 
processing time of H-PMHT. One of them is the dynamic struc-
ture of the video data, because in video tracking applications 
tracker processes data sequentially, not in a batch structure. 
The other is the long processing time, which is due to the 
structure of H-PMHT. By setting the batch number to one and 
replacing the smoother filter by a Kalman filter it becomes pos-
sible to overcome the issue of data processing sequence. On 
the other hand, dealing with the long processing time is a chal-
lenge. The aim of this study is not to completely eliminate this 
issue, but to reduce the processing time by improving H-PMHT 
algorithm. For this purpose, not only algorithm improvement, 
but also an amendment needs to take place in the basic struc-
ture of the H-PMHT in order to reduce the processing time 
while continuing tracking and keeping estimation error within 
a reasonable limit. The resulting algorithm is called Improved 
H-PMHT (I/H-PMHT).

The tracking performance of I/H-PMHT for video data is given 
in the experimental study section. In this section, the obtained 
results are also compared in terms of processing time and esti-
mation error with standard H-PMHT, and Interacting Multi Model 
Probabilistic Data Association with Amplitude Information (IM-
MPDA-AI) algorithms for different conditions and cases [13]. 

Measurement Model

This study intends to reduce the processing time of H-PMHT al-
gorithm. To that end, RGB video is taken for various aircrafts and 
each frame is processed separately according to time sequence. 
First of all, RGB images are converted into intensity images. Na-
tional Television System Committee (NTSC) standard for trans-
forming RGB to grayscale, defined in, is given as follows,

I x, y( ) = 0.2989R x, y( )+0.587G x, y( )+0.114B x, y( )  (1)

After that, pixel-wise difference function is obtained using 
a similar process as that described in [14, 15]. The aim of this 
process is to obtain frame data for frames k and k+Δ, then sub-
tract them and take the absolute value of the difference. This 

is followed by the thresholding process, and the remaining 
values give information about the movement. k represents the 
instantaneous frame time, and Δ represents the sampling peri-
od of frames. As long as the object does not move too fast, the 
detected regions of the object are reduced. However, this pro-
cess leaves a ghost where the object was located, and a large 
part of the object cannot be detected unless the object moves 
fast [16]. Additional processing is required to reduce the ghost 
effect by adapting the measurement data to the situation. For 
this purpose, we obtained the difference from the former to the 
following time sequence as follows.

Idif (x, y) = Ik (x, y)− Ik+Δ(x, y)  
(2)

There are two additional steps that must be performed to ob-
tain the measurement model. The first step is thresholding the 
unwanted ghosts due to the former time k. As a result of the 
operation in equation (2), negative and positive intensity dif-
ferences are obtained. Indeed, high magnitude negative values 
are out of the scope of this work, because they are the reflec-
tions of former target echo. In order to get rid of these spurious 
intensities, negative values are converged to noise floor, and 
positive values are taken directly. Thus the intensity level of 
each cell M(x,y) is given as follows,

  (3)
M x, y( ) =

INoise_ floor + rand , Idif x, y( ) ≤ 0
Idif x, y( ) = Idif x, y( ) , Idif x, y( ) > 0
⎧
⎨
⎪

⎩⎪  

where INoise_floor represents the intensity of the noise floor, which 
is defined as the intensity level of pixels that do not originate 
from the target or the clutter. Idif(x,y) represents the intensity of 
differences, and rand is the uniformly distributed pseudoran-
dom number.

The second step taken in order to obtain the measurement mod-
el is intensity pruning. The square root of M(x,y) values of intensi-
ties are taken as in equation (4). Thus, an excessive increment in 
dynamic range and high intensity clutters are prevented. 

  (4)IPDIM x, y( ) = M x, y( )
 

The measurement model is achieved after obtaining pixel 
intensity levels for each pixel of the sensor area. Because the 
data is obtained using the difference of pixel intensities of the 
sequential video frames, it is defined as Pixel-wise Difference 
Intensity Modulated (PDIM) data. RGB images of sequential 
video frames of an aircraft, intensity images related to them, 
and resulting PDIM data image are given in Figure 1. The scan 
steps between them are 3 frames, in other words Δ=3.

Using PDIM method, stationary parts of the image can be elim-
inated or reduced to acceptable levels, since intensity levels of 
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pixels related to stationary parts will remain the same at con-
secutive times and the difference of the intensity levels will be 
zero, small motions on some parts of stationary objects or a 
slight vibration of camera will result in a non-zero difference 
level, and it is taken into calculations as background clutter. 
In this study PDIM data is used for surface to air video object 
tracking with improved H-PMHT algorithm.

Basic Structure of H-PMHT

The H-PMHT algorithm is introduced in [6, 8, 9] with its theory 
and derivations. Before entering the details of H-PMHT algo-
rithm, its parametric TkBD structure is discussed. In tradition-
al tracking methods, thresholding, clustering, extracting and 

tracking procedures are carried out consecutively. On the oth-
er hand, TkBD method performs all the steps concurrently [17, 
18]. TkBD merges detection and estimation phases by eliminat-
ing the detection algorithm from the process and supplying 
the whole sensor frame directly to the tracker. This increases 
trace accuracy and allows the tracker to keep track for low SNR 
targets [19]. The H-PMHT algorithm inherently includes the 
TkBD capability and makes it possible to obtain extended ob-
ject traces directly from an image sequence.

Only a general structural outline for H-PMHT is given here. 
H-PMHT is mainly developed from PMHT, and all derivations of 
PMHT arise from Expectation Maximization (EM) method [20]. 
The purpose of using the EM process in the H-PMHT algorithm 
is to assign histogram distribution to the model components 
and to designate the precise position of the shots as missing 
data. It also allows for unobserved cells with abstract sensor 
pixels that do not convey any data. The probability of the miss-
ing data is determined in the E-step and the state estimates are 
refined in the M-step. Initialization and iteration steps of H-PM-
HT according to E and M-steps are given below.

Initialization of H-PMHT Algorithm

Initialization steps must be defined before iterations are de-
scribed. At the beginning of each iteration mixing proportions (

π̂ tk
0( ) are determined for background and all target models (k=0, 

1,…, M), and for batch sequence t = 1 = 1,K,T, for which T≥1 
denotes the number of scans in a batch of measurement, as 
follows,

      
(5)π̂ tk

0( ) > 0   and π̂ t0
0( ) + π̂ t1

0( ) +!+ π̂ tM
0( ) =1

 

In addition, for k =1,…,M , for which M≥1 denotes the 
number of targets, the following is initialized,

- Target State Sequence: x̂0k
0( ) , x̂1k

0( ) ,…, x̂Tk
0( )

- Measurement Covariance Sequence: R̂1k
0( ) ,…, R̂Tk

0( )

- Target Covariance: Q̂k
0( )

The H-PMHT algorithm consists of repeated iteration steps for 
each batch sequence t =1,…,T . Some of these iteration 
steps stem from Expectation and Maximization, the remainder 
comes from Kalman smoothing filter. Throughout the iterations 
the dynamic matrix F and measurement matrix H are assumed 
as constant or time invariant. Iteration steps with respect to Ex-
pectation, Maximization, and Kalman smoothing processes are 
given in the following subsections.

Expectation

Step 1. Total Sensor Probabilities (TSPs)

First, Target Cell Probabilities (TCP) are calculated for batch 
length t=1,...,T for all cells ℓ=1,…,S and for all target models, 
including background k=0,1,…,M . S represents the number of 

Figure 1. Proposal structure video images for an aircraft at k and 
k+3 frames (above); Intensity images of them [middle, and PDIM 
(bottom)] data obtained using them

K
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whole cells in the sensor area. For the background and targets 
TCPs are calculated as follows,

      
(6)Ptkℓ

i+1( ) =

1
S

     if  k = 0

N τ ;Htk x̂tk
i( ) , R̂tk

i( )( )dτ if  k =1,…,M
Bℓ t( )
∫

⎧

⎨
⎪⎪

⎩
⎪
⎪

 

where τ represents the variable term of N(∙) Gaussian PDF.

Total cell probabilities are obtained by summing the product 
of TCPs and mixing proportions for all target models and back-
ground as in equation (7).

    (7)Ptℓ
i+1( ) = π̂ tk

i( )Ptkℓ
i+1( )

k=0

M

∑
   

Finally, TSPs are attained using only displayed cells or cells with 
measurement ℓ=1,…,L(t) as follows;

     (8)Pt
i+1( ) = Ptℓ

i+1( )

ℓ=1

L t( )

∑
    

Step 2. Expected Measurements (EMs)

EMs are calculated as in equation (9) for t=1,...,T, and ℓ=1,…,S.

      (9)ztℓ
i+1( ) =

ztℓ 1≤ ℓ ≤ L t( )

Zt
Ptℓ
i+1( )

Pt
i+1( )

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟ L t( )+1≤ ℓ ≤ S

⎧

⎨
⎪⎪

⎩
⎪
⎪

where Zt  represents L1 norm of displayed cells 
B1 t( ) ,…,BL(t ) t( ){ }  and it is defined as follows,

Zt = ztℓ
ℓ=1

L t( )

∑     (10)

Maximization

Step 3. Cell-level Centroids (CCs):

CCs are calculated by using equation (11).

      (11)!ztkℓ
i+1( ) =

1
Ptkℓ
i+1( ) τ N τ ;Htk x̂tk

i( ) , R̂tk
i( )( )

Bℓ t( )
∫ dτ

               

Using CCs, synthetic measurements are obtained as follows;

!ztk
i+1( ) =

ztℓ
i+1( ) ℘tkℓ( )⎡

⎣
⎤
⎦!ztkℓ

i+1( )
ℓ=1

S
∑

ztℓ
i+1( ) ℘tkℓ( )⎡

⎣
⎤
⎦ℓ=1

S
∑

→ ℘tkℓ =
Ptkℓ
i+1( )

Ptℓ
i+1( )

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
 

(12)

Step 4. Synthetic Covariance Matrices

Synthetic measurement matrices given in equation (13) are ob-

tained for t = 1,...,T, and k = 1,...,M.

      (13)
!Rtk
i+1( ) =

R̂tk
i( )

π̂ tk
i( ) ztℓ

i+1( ) ℘tkℓ( )⎡
⎣

⎤
⎦ℓ=1

S
∑

Also, for t = 0,1,...,T–1 synthetic measurement covariance ma-
trices are calculated as follows:

      (14)!Qtk
i+1( ) =

Pt+1
i+1( )

Zt+1
Q̂k

i( )

Step 5. Mixing Proportions 

Mixing proportions are calculated for t = 1,...,T and k = 0,1,...,M:

      (15)π̂ tk
i+1( ) =

π̂ tk
i( ) ztℓ

i+1( ) ℘tkℓ( )⎡
⎣

⎤
⎦ℓ=1

S
∑
π̂ t ʹk

i( ) ztℓ
i+1( ) ℘tkℓ( )⎡

⎣
⎤
⎦ℓ=1

S
∑

ʹk =0

M
∑

Kalman Smoothing Filter

To obtain estimated target states a Kalman smoother filter is 
applied. This portion of the algorithm is composed of forward 
and backward filters.

Step 6. Forward Filter 

The forward Kalman smoother filter for t=0, 1,…, T-1 is applied  
using synthetic measurements in order to refine target state es-
timates. At this point dummy expectation is taken as !y00

i+1( ) k( ) = 0  
and dummy covariance is P00

i+1( ) k( ) = 0 . The equations of forward 
filter are given in (16)-(18)

Pt+1t
i+1( ) k( ) = FPt t

i+1( ) k( )F ∗ + !Qtk
i+1( )

  (16)

Wt+1
i+1( ) k( ) = Pt+1t

i+1( ) k( )H H Pt+1t
i+1( ) k( )H ∗ + Rt+1,k

i+1( )( )
−1

 (17)

Pt+1t+1
i+1( ) k( ) = Pt+1t

i+1( ) k( )−Wt+1
i+1( ) k( )H Pt+1t

i+1( ) k( )
 (18)

!yt+1t+1
i+1( ) k( ) = F!yt t

i+1( ) k( )+Wt+1
i+1( ) k( ) !zt+1,k

i+1( ) −H!yt t
i+1( ) k( )( )

 (19)

where Wt+1
(i+1) is filter gain, and F is state transition matrix, 

which are defined in [4, 5].
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Step 7. Backward Filter

The equation of backward filter for t = T – 1,....1 is given as  
follows:

      (20)

x̂tk
i+1( ) = !yt t

i+1( ) k( )+ Pt t
i+1( ) k( )F ∗ Pt+1t

i+1( ) k( )( )
−1

In( )
where In = x̂t+1,k

i+1( ) − F!yt t
i+1( ) k( )

 

Step 8. Estimated Covariance Matrices

First cell-level measurement covariance is calculated,

      (21)R̂tkℓ
i+1( ) =

N τ ;Htk x̂tk
i( ) , R̂tk

i( )( )E E∗ dτ
Bℓ t( )
∫

Ptkℓ
i+1( )

where E = τ −Htk x̂tk
i+1( )

The estimated measurement covariance matrix is calculated as 
given in equation (22):

      (22)R̂tk
i+1( ) =

ztℓ
i+1( ) ℘tkℓ( )⎡

⎣
⎤
⎦ℓ=1

S
∑ R̂tkℓ

i+1( )

ztℓ
i+1( ) ℘tkℓ( )⎡

⎣
⎤
⎦ℓ=1

S
∑

And the last operation shown in equation (23) of the iteration is 
to obtain estimated target covariance matrices for all the target 
models except for the background.

      (23)
Q̂k

i+1( ) =

Zt
Pt
i+1( )

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟ x̂tk

i+1( ) − Fx̂t−1,k
i+1( )( ) x̂tki+1( ) − Fx̂t−1,k

i+1( )( )
∗

t=1

T
∑

Zt
Pt
i+1( )

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟t=1

T
∑

  

Variations of the Algorithm

Histogram probabilistic multi-hypothesis tracker is a strong 
and reliable tracking algorithm and originally developed for 
data streams. However, it is not conformed to real time appli-
cations. The aim of this study is to converge real time tracking 
or reduce the processing time of H-PMHT algorithm without 
terminating tracking for video applications. First of all, video 
data is converted to PDIM data in order to clutter effects and 
enhance target detectability. Then some improvements are ap-
plied to mathematical operations, in particular by taking the 
practical advantage of two-dimension, and also some amend-
ments are applied to the algorithm itself. This work was done 
by adding intensity information that can be thought of as a 
third dimension in two-dimensional space. For this reason, this 
study is regarded as a two-dimensional application and the 
assumptions in [10] can be implemented. The most important 
aspect of these assumptions is that x and y axes are statisti-

cally independent of each other. Another assumption for the 
process is that there is no pre-information about point spread 
function of the objects. They mostly retain their original shape 
and this shape is not similar to linear-Gaussian distribution.

It will be proper to state that there is no revision on the se-
quence of EM based iteration steps. The main difference takes 
place in the batch structure of EM iteration. In this study batch 
structure is eliminated and its structure is converted to single 
scan algorithm. To overcome a priori information absence, 
a priori density obtained via earlier measured data is used as 
stated in [6]. Using single scan structure is more viable than 
batch structure for converging real-time video object tracking 
applications. By using single scan structure, smoothing filter 
turns to Kalman Filter (KF), but in this case not much processing 
time reduction takes place. This is the first step for the reduc-
tion of processing time. The improvements and amendments 
are described separately in the following subsections.

Operational Improvements

In this section, no algorithmic amendments, but operation im-
provements of the algorithm are described. To achieve this aim 
the batch structure is turned into single scan algorithm, but 
multi iteration structure is preserved. The inspected part in this 
section is the most time-consuming fragment of the H-PMHT 
process which is spent in calculation of integration operations. 
These operations are

- Target Cell Probabilities Ptkℓ
i+1( ) ,

- Cell Level Centroids ztkℓ
i+1( ) ,

- Cell Level Meas. Covariance Contributions R̂tkℓ
i+1( )

.

In two-dimensional case these three expressions are normally 
calculated for x and y axes separately, then corresponding values 
of each pixel are multiplied with each other to obtain the overall 
value. The total number of integration (NoI) is calculated by sum-
ming up NoI of the above three expressions. In this context NoI 
of a sensor area with “200 x 200 pixels” is calculated as follows.

For x-axis:

NoI Ptkℓ x
i+1( ){ }= NoI !ztkℓ x

i+1( ){ }= NoI R̂tkℓ x
i+1( ){ }= 40000

For y-axis:

NoI Ptkℓ y
i+1( ){ }= NoI !ztkℓ y

i+1( ){ }= NoI R̂tkℓ y
i+1( ){ }= 40000

For two dimensions:

NoI Ptkℓ
i+1( ){ }= NoI !ztkℓi+1( ){ }= NoI R̂tkℓi+1( ){ }= 2×40000

 = 80000
Total NoI:

Total − NoI = 6×80000 = 480000



126

Electrica 2018; 18(2): 121-132
Pakfiliz A.G. Reduction of H-PMHT Process Time

This phase increases the process time exponentially for linear 
increasing of sensor dimensions. To decrease the processing 
time, an improvement method is applied to H-PMHT operation 
in order to obtain Target Cell Probabilities, Cell Level Centroids, 
and Cell Level Measurement Covariance Contributions. For this 
purpose, only the elements of the first row of x axis contribu-
tion and only the elements of the first column of y axis contri-
bution are calculated. Thus, NoI for sensor area with “200 x 200” 
pixels can be shown as follows.

For x-axis:

NoI Ptkℓ x
i+1( ){ }= NoI !ztkℓ x

i+1( ){ }= NoI R̂tkℓ x
i+1( ){ }=

No.of  Row
NoR( )

 

For y-axis:

NoI Ptkℓ y
i+1( ){ }= NoI !ztkℓ y

i+1( ){ }= NoI R̂tkℓ y
i+1( ){ }=

No.of  Column
NoC( )

 

For two dimensions:

NoI Ptkℓ
i+1( ){ }= NoI !ztkℓi+1( ){ }= NoI R̂tkℓi+1( ){ }= NoR+ NoC

 = 2×200 = 400 
Total NoI:

Total − NoI = 6× pixel − no.= 6×400 = 2400

After finding the elements of the first row of x axis contribution 
for the three expressions, we then selected the other rows in 
the same way as the first row and established Target Cell Prob-
abilities, Cell Level Centroids, and Cell Level Measurement Co-
variance Contributions. Similarly, for y axis contribution, other 
columns are taken in the same way as the first column. In fact, 
the results obtained by taking integration for whole pixels of 
the sensor area using the classical method is the same as the 
reduced one. Thus, the NoI reduces from 480000 to 2400. A 
remarkable reduction in processing time is obtained and no 
reduction in accuracy occurs Applying this improvement ap-
proximately 34 - 63% (differs for different sensor area) process 
time reducing with respect to standard H-PMHT is obtained. 
The results are given in the experimental study section.

Algorithm Amendments

In addition, some algorithm amendments were used in order 
to decrease processing time and adjust the algorithm structure 
to dynamic and real time conditions. These amendments are 
given in the following items.

Item 1. First of all, the batch structure of the H-PMHT algorithm 
is converted to single scan algorithm, and the algorithm be-
comes more suitable for dynamic applications, such as video 
object tracking [19]. A result of this conversion that backward 
filter is removed and the smoothing filter turns into KF. Because 
smoother filer turns to KF, the estimated target states !yt|t

( i+1) (k) 
and dummy covariance matrix ( 1)

| ( )i
t tP k+  are picked up from 

the previous frame step instead of initiate them for each itera-

tion. Also, the initiation process is eliminated and the output of 
the previous time will be the input of the next time.

Item 2. Reducing iteration number is another amendment for 
reducing processing time. But reducing iteration number with-
out taking necessary measures may be resulted with conver-
gence insufficiency of state estimates to true position. In order 
to mitigate this risk, measurement covariance sequences in the 
initialization phase R̂tk

0( )  are selected compatible with the tar-
gets. Compatible means selecting initial measurement covari-
ance low for small targets, and high for large targets.

Item 3. In order to reduce iteration number without increasing 
the estimation error more than an allowable amount, an addi-
tional measure is taken. In the fundamental theory of H-PMHT 
[6], some expressions are calculated for only displayed cells 
(B1(t),...,BL(t)(t)), without using the truncated ones (BL(t)+1(t),...,BS(t)). 
These expressions are; L1 norm of measurements tZ , total 
sensor probabilities Pt

i+1( ) , and expected measurements ztℓ
i+1( )

. The border level between displayed and truncated cells can 
be regarded as threshold level which comes from the struc-
ture of H-PMHT. In fact, this is not exactly a threshold, because 
truncated cells are also counted in the calculations except 
the above expressions. Thus it may be called as Displayed Cell 
Threshold-DCT. Selecting a higher DCT value will reduce the 
number of steps required to converge the state estimates to 
the correct position. On the other hand, increasing the DCT ex-
cessively may cause some target-based measurements to be 
incomplete. 

Item 4. Using compatible initial measurement covariance R̂tk
0( )  

and proper DCT, the iteration number may be reduced to one, 
and an additional reduction in processing time can be reached. 
Calculation of estimated measurement matrix R̂tk

i+1( )  is not nec-
essary for one iteration case.

-By using compatible initial measurement covariance R̂tk
0( )  and 

proper DCT, iteration number may be reduced to one, and an 
additional reduction in processing time can be reached. Calcu-
lation of estimated measurement matrix R̂tk

i+1( )  is not necessary 
for one iteration case.

After making these amendments approximately 8 -29% addi-
tional process time reducing (differs for different sensor area) 
is obtained. This reduction takes place after operational im-
provement, and the reduction rate is based on the CPU time of 
operational improvement applied H-PMHT, not the total CPU 
time rate. This case is different from operational improvements, 
because algorithm amendments result in sacrificing some ac-
curacy, especially in low DCTs.

At the end of the improvement and amendment process the 
total decreasing process time converges to approximately 
65%. The reduction amount decreases with big sensor area, 
and it increases with small sensor area. The detailed results are 
also given in the simulation section. The new version of the al-
gorithm is named as improved H-PMHT (I/H-PMHT), and sche-
matic structure is given in Table 1.
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Experimental Study

The experimental trials were conducted for different scenari-
os of single aircraft and chopper videos taken from surface to 
air. Video data was captured in true color (RGB) format with 
“640x480” pixels, using a 14.1 Mega-pixel camera. In the simu-
lations the dimensions of sensor areas are selected “200x200”, 
“250x250”, and “300x300” pixels in order to evaluate CPU reduc-
tion rate for different sensor areas.

The study is conducted in two-dimensional case, and the as-
sumptions made in [10] are used. Additionally, pre-information 
about point spread function of the objects does not exist. They 
mostly retain their original shape and these shapes are quite 
different from the linear-Gaussian distribution.

To perform the operation, first the PDIM data is obtained us-
ing the video data taken from surface to air in daylight. Then 
tracking process is applied to each PDIM data using I/H-PMHT 
algorithm. For benchmarking the obtained results in terms of 
process time reduction and performance each scenario is re-
applied to standard H-PMHT and a trustworthy probabilistic 
algorithm IMMPDA-AI. This algorithm is a combination of IMM 
estimator and PDA technique [4, 5], and by adding amplitude 
information, the results obtained with IMMPDA-AI will be prop-
er for a fair comparison with the results of I/H-PMHT. Thus, pro-
cessing time shortening and tracking performances of I/H-PM-
HT are compared with the counterparts of standard H-PMHT 
and IMMPDA-AI.

Table 1. Structural Comparison between Standard H-PMHT and I/H-PMHT

Phase of the Algorithms Standard H-PMHT

I/H-PMHT Multi Iteration 
(Only Operational 

Improvement)

I/H-PMHT One Iteration 
(Both Operational 
Improvement and 

Algorithmic Amendment) 

Initialization for batch length t = 1,....T

x̂0k
0( ) , x̂1k

0( ) ,…, x̂Tk
0( )

π̂ t0
0( ) + π̂ t1

0( ) +!+ π̂ tM
0( )

R̂1k
0( ) ,…, R̂Tk

0( ) and Q̂k
0( )

no batch for each scan

x̂tk
0( ) , π̂ tk

0( )

R̂tk
0( ) and Q̂k

0( )

no batch for each scan

x̂tk , π̂ tk

R̂tk
0( ) and Q̂k

0( )

Expectation
Ptkℓ
i+1( )

, 
Ptℓ
i+1( )

Pt
i+1( ) , ztℓ

i+1( )

Ptkℓ
i+1( )  (Operational impr.)

Ptℓ
i+1( ) , Pt

i+1( ) ,  ztℓ
i+1( )

Ptkℓ
i+1( )  (Operational impr.)

Ptℓ
i+1( ) , Pt

i+1( ) ,  ztℓ
i+1( )

Maximization
!ztkℓ
i+1( )

, 
ztk
i+1( )

,

!Rtk
i+1( )

, 
!Qtk
i+1( )

, 
π̂ tk

i+1( )

!ztkℓ
i+1( )

 (Operational impr.)

ztk
i+1( )

, 
!Rtk
i+1( )

!Qtk
i+1( )

, 
π̂ tk

i+1( )
 

!ztkℓ
i+1( )

 (Operational impr.)

ztk
i+1( )

, 
!Rtk
i+1( )

!Qtk
i+1( )

, 
π̂ tk

i+1( )
 

Kalman Smoothing Filter Forward Filter 

!yt+1|t+1
( i+1) (k)

Backward Filter

x̂tk
i+1( )

Forward Filter 

x̂tk
i+1( )

Backward Filter 
(No Backward Filter)

Forward Filter 

x̂tk
i+1( )

Backward Filter 
(No Backward Filter)

Covariance Estimation
R̂tkℓ
i+1( )

R̂tk
i+1( )

Q̂tk
i+1( )

 

R̂tkℓ
i+1( )  (Operational impr.)

R̂tk
i+1( )

Q̂tk
i+1( )

R̂tkℓ
i+1( )  (not necessary)  

R̂tk
i+1( )  (not necessary)

Q̂tk
i+1( )
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Interacting Multi Model Probabilistic Data Association with Am-
plitude Information is a point tracker method. PDIM data was 
adapted to meet the requirements without violating fair com-
parison. To obtain measurement data suitable with IMMPDA-AI, 
first the mean value of total sensor area (say, nxn) intensity ratio  
( SAI ) is calculated. Threshold is selected 10% higher than the 
mean value, and the resulting value is taken as amplitude infor-
mation threshold (TAI ). Hence the number of point measurements 
is brought into a reasonable level for comparison. Then the whole 
the sensor area is divided into 5x5 pixel units and mean intensity 
values of each pixel unit ( PUI ) are calculated as follows,

      (24)

ISA =
I x, y( )all−pxl∑

n× n
TAI =1.1× ISA

IPU 5×5( ) =
I x, y( )5×5∑
5×5                  

The mean intensity values of each pixel unit compare with the 
threshold magnitude. If the mean intensity of a pixel unit is great-
er than the threshold of amplitude information IPU ≥TAI  

 
then 

it is accepted as a measurement, otherwise it is not taken as a 
measurement. For each measurement, the mean intensity of the 
related pixel unit ( PUI ) is taken as amplitude information.

In the experimental study the target parameters of interest are 
the location and velocity according to x and y axes, and the 
state vector is as follows,

      (25)Xtk = xtk xtk( )
•

ytk ytk( )
•⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

T

at time t and for target k. k = 1 is selected because single target 
is assumed. For the obtained four-state Markov model, state 
transition and process covariance matrices are as follows:

      (26)F =

1 ∆ 0 0
0 1 0 0
0 0 1 ∆
0 0 0 1

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

Qk =σ
2

∆3 3 ∆2 2 0 0
∆2 2 ∆ 0 0
0 0 ∆3 3 ∆2 2
0 0 ∆2 2 ∆

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

where Δ represents the frame numbers between samples of 
video data, and σ is the process noise standard deviation or 
scale factor as defined in [21]. Measurement matrix H, and mea-
surement covariance matrix Rtk are defined as follows:

      (27)H = 1 0 0 0
0 0 1 0

⎡

⎣
⎢

⎤

⎦
⎥ Rtk = ρ

2 1 0
0 1

⎡

⎣
⎢

⎤

⎦
⎥

where ρ2 is measurement error variance.

The performances of I/H-PMHT, standard H-PMHT and IMMP-
DA-AI were analyzed using real-life records surface to air vid-
eo data with single chopper or aircraft. Various scenarios were 
employed to assess the performances of algorithms in differ-
ent environments, speeds and target geometries. The envi-
ronmental conditions directly affect the signal-to-noise ratio 
(SNR), so different SNR values are used in the study. In addition 
to different aircraft types, different speed ratios, different pix-
el propagation levels and deviations from the linear-Gaussian 
shape were also taken into account. In order to establish PDIM 
data, different frame numbers between samples (Δ) were also 
used. Each scenario was defined for 20 scans. Also, four iter-
ations were used for both standard H-PMHT and operational 
improvements applied I/H-PMHT. Thus, an optimal operation 
was reached, which means sufficient convergence of state es-
timates to target centroids was obtained without excessively 
increasing CPU time. Generalized scenario parameters are sum-
marized in Table 2.

Before submitting the performance results of the tracking 
process for the inspected scenarios, state estimations of the 
algorithms and target trajectory for a particular scenario are 
presented. In this way we aimed to show the tracking perfor-
mance after operational improvement and algorithmic amend-
ment. Target centroids and estimation trajectories only of oper-
ational improvement applied I/H-PMHT, standard H-PMHT and 

Table 2. General Summary of the Simulation Scenarios 

Scenario 
Number

No.of 
Sampling 
Frame (Δ)

Sensor 
Area (pxl2)

Area of 
Air Object 

(pxl2)

Mean 
Velocity 

(pxl/frame)
Noise Level 
(PDIM) (dB)

SNR (PDIM) 
(dB)

Noise Level 
(AI) (dB)

SNR (AI) 
(dB)

1 4 250x250 240 2.5 1 8.8 0.84 8.1

2 3 300x300 126 3.8 0.75 8.9 1.17 7.85

3 3 250x250 280 3.3 0 9.89 0.46 8.35

4 2 200x200 78 3 0 8.54 0 6.15

5 2 200x200 88 2.5 0.67 8.3 0.6 5.7

6 3 250x250 40 1.35 0.98 9.74 1.34 6.5

7 3 250x250 434 3.5 1.15 9.93 1.7 7.96

8 2 250x250 450 4.23 0 9.8 0.5 8.26
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IMMPDAFAI algorithms throughout the fifth scenario are given 
in Figure 2. The figures are given for Displayed Cell Threshold 
(DCT) 5 dB over noise level.

Moreover, in Figure 3 the estimation trajectories were obtained 
using four iterations for standard H-PMHT and one iteration for 
I/H-PMHT. In this case I/H-PMHT was subjected to both oper-
ational improvements and algorithm amendments, and DCT 
was selected 5 dB.

The performances of the algorithms are evaluated by hit on the 
target (HoT), and RMS position estimation error with respect to 
target centroid. If HoT is greater than 80%, tracking process is as-
sumed as successful. After evaluating the performances of the al-
gorithms, processing time is taken into account. Processing time 
is represented with CPU time, and this value is taken as a third 

component for evaluation. The processor of the computer used 
in simulations is Intel-Core i5-3470 CPU with 4 cores at 3.20 GHz. 
The computer has 4 GB RAM, the OS is Win 7 Professional, and its 
instruction set is 64-bit. In Table 3 simulation results of algorithms 
with respect to scenarios are given for evaluation and compari-
son. In the table mean values of the algorithms RMS estimation 
errors with reference to target centroids throughout the scenari-
os are given as deviation from target centroid (Dev.Trg.Cent.).

Histogram probabilistic multi-hypothesis tracker and I/H-PMHT 
simulations were conducted for two different Displayed Cell 
Threshold (DCT) levels, which are 3 dB and 5 dB over noise level. 
For amplitude information of point measurement data, which is 
used in IMMPDA-AI simulations, AI Threshold (AIT) levels were 
also selected 3 dB and 5dB over noise level.  A fair comparison 
was made between the performances of the algorithms.

The results obtained in the simulation study are summarized 
as follows;

- The simulation results show that standard H-PMHT and only 
operational improvement applied I/H-PMHT both outperform 
on IMMPDA-AI in terms of estimation error and HoT for whole 
scenarios. If we compare the results obtained with I/H-PMHT 
(operational improvement and algorithmic amendment ap-
plied) and the results obtained with IMMPDA-AI, they show 
similar performance for DCT 3 dB over noise level, and I/H-PM-
HT shows better performance for DCT 5 dB over noise level. In 
terms of processing time, IMMPDA-AI is unquestionably supe-
rior to the other algorithms. After attempting the operational 
improvement and algorithmic amendment, I/H-PMHT provides 
a respectable processing time decrease, but is still not suffi-
cient for real-time tracking.

- When only operational improvement is applied, standard 
H-PMHT gives better results than I/H-PMHT at 3 dB higher level 
DCT, and worse results at 5 dB higher level DCT. The only excep-
tion takes place in the sixth scenario, which has a relatively small 
object area. These results show that only operational improve-
ment applied I/H-PMHT (single scan, multi iteration structure) is 
more suitable for video object tracking than the standard H-PM-
HT algorithm. In this case CPU time reduction is relatively high.

- When both operational improvement and algorithmic amend-
ment occur standard H-PMHT outperforms I/H-PMHT for 3 dB 
higher level DCT. On the other hand, for 5 dB higher level DCT 
the performance of I/H-PMHT is similar to the performance of 
the standard H-PMHT, and outperforms for high intensity tar-
get cases (scenarios 1, 6, 7).

- Using PDIM data with Standard H-PMHT and I/H-PMHT gives 
satisfactory results, and this shows that PDIM data is suitable 
for video object tracking.

- When the decreased processing time is taken into account 
from Standard H-PMHT to only operational improvement ap-
plied I/H-PMHT, and both operational improvement and algo-
rithmic amendment applied to I/H-PMHT, then the amount of 
increased or decreased estimation error rate must also be tak-

Figure 2. Target Centroids and State Estimations throughout Sce-
nario 5 (only operational improvement is applied to I/H-PMHT)

Figure 3. Target Centroids and Estimations throughout Scenario 
5 (applied both operational improvements and algorithm amend-
ment to I/H-PMHT)
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en into account. For this purpose, Table 4 was prepared using 
the results of the simulation study.

Table 4 shows that a decrease in processing time is directly re-
lated to the sensor area. In wider sensor areas processing time 
decreasing is low, and vice versa. Also converging to target cen-
troids with standard H-PMHT occurs rapidly for small sensor ar-
eas (scenarios 4 and 5), even if target intensities are not high. 
I/H-PMHT requires high target intensities, and especially for 
DCT’s 5 dB higher than noise level has sufficient success. Esti-
mation errors of I/H-PMHT obtained for all scenarios are within 
acceptable limits for track continuation. 

Conclusion

This study has provided a new approach for reducing the CPU 
time of H-PMHT algorithm. For this purpose, operational im-

provement and algorithmic amendment processes were applied 
to standard H-PMHT algorithm, and I/H-PMHT algorithm was ob-
tained. Measurement data used in the study is defined as PDIM 
data. The PDIM data was obtained from true color video data of 
flying objects taken from the ground. PDIM data is very useful 
and easily processed for filtering moving objects from the sta-
tionary ones, and for use with H-PMHT and its variations.

In the experimental study using PDIM data, standard H-PMHT 
and operational improvement applied I/H-PMHT and both op-
erational improvement and algorithmic amendment applied 
I/H-PMHT algorithms present satisfactory tracking results. The 
comparison was made between standard H-PMHT, operational 
improvement applied I/H-PMHT, and operational improvement 
and algorithmic amendment applied I/H-PMHT algorithms. 
Furthermore IMMPDA-AI algorithm was used for comparison 
purposes. The results show that improvement on processing 

Table 3. Overall Performance of Algorithms

Scenario 
Number

St. H-PMHT 
(4-Iterations)

I/H-PMHT (4-Iterations) 
Only Opr.Improvement

I/H-PMHT (1-Iteration) 
Both Opr.Imp.and Algo.

Amendment IMMPDA-AI

DCT 3dB DCT 5dB DCT 3dB DCT 5dB DCT 3dB DCT 5dB AIT 3dB AIT 5dB

1

D=4 
H=100 

C=539.7

D=4.04 
H=100 
C=547

D=5.3 
H=85 

C=234.9

D=2.6 
H=100 
C=238

D=10.6 
H=70 

C=185.7

D=3.95 
H=100 
C=191

D=10.2 
H=80 

C=0.65

D=10.7 
H=80 

C=0.23

2

D=3.5 
H=100 

C=1190.7

D=2.78 
H=100 
C=1163

D=3.75 
H=90 
C=777

D=1.6 
H=100 

C=726.3

D=6 
H=80 
C=673

D=3.13 
H=100 

C=670.6

D=11.8 
H=15 
C=0.8

D=11.8 
H=30 
C=0.8

3

D=7.2 
H=85 

C=533.5

D=4.1 
H=95 
C=533

D=8.4 
H=80 
C=236

D=4.27 
H=90 
C=235

D=11.4 
H=70 

C=194.2

D=4.34 
H=90 

C=185.6

D=10 
H=100 
C=0.5

D=10 
H=100 
C=0.5

4

D=7 
H=70 

C=303.3

D=1.8 
H=100 

C=301.2

D=7.4 
H=65 

C=111.2

D=1.6 
H=100 

C=112.1

D=10.2 
H=50 

C=80.2

D=4.5 
H=100 
C=79.7

D=7.8 
H=65 

C=0.51

D=8.25 
H=60 

C=0.51

5

D=5.3 
H=80 

C=294.6

D=2.14 
H=100 

C=297.5

D=5.7 
H=80 
C=110

D=2.9 
H=100 

C=110.8

D=9.5 
H=60 

C=78.6

D=7.26 
H=70 

C=78.9

D=6 
H=85 
C=0.5

D=6 
H=80 

C=0.36

6

D=4.8 
H=75 

C=530.4

D=5.1 
H=75 
C=534

D=4.2 
H=85 
C=235

D=2.2 
H=100 

C=238.4

D=6 
H=75 

C=186.7

D=3.6 
H=90 

C=186.1

D=4.37 
H=95 
C=0.5

D=4.4 
H=100 
C=0.5

7

D=4.5 
H=100 

C=529.8

D=4.34 
H=100 

C=528.4

D=8.6 
H=85 

C=236.3

D=3.37 
H=100 

C=234.7

D=9.4 
H=85 

C=185.9

D=3.65 
H=100 

C=185.6

D=9.5 
H=100 
C=0.46

D=9.47 
H=95 

C=0.47

8

D=4.23 
H=100 

C=532.7

D=3.6 
H=100 

C=535.6

D=4.4 
H=100 

C=236.4

D=3.7 
H=100 

C=235.5

D=4.5 
H=100 

C=186.7

D=4.1 
H=100 

C=185.5

D=6.5 
H=100 
C=0.53

D=6.5 
H=100 
C=0.54

D: mean deviation from target centroid throughout tracking process (in pixels); H: hit on target-HoT throughout tracking process (%); C: CPU time usage 
throughout tracking process (in seconds); DCT 3 dB: displayed cell threshold is in the level of 3 db higher than noise level; DCT 5 dB: displayed cell threshold is in 
the level of 5 db higher than noise level; AIT: amplitude information threshold
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time up to 73.5% (with respect to sensor area dimensions) is 
possible. Also, further reducing the sensor area will result in 
further decrease in processing time. The tracking performance 
after improvements is also sufficient for tracking continuity.

In this work processing time reduction was achieved, but these 
results are still not sufficient for real time video tracking. It is 
assumed that without changing the structure of H-PMHT the 
lowest CPU time usage border is reached. In the light of these 
indications future work is planned in which an FPGA based 
technique in addition to I/H-PMHT will be used in order to 
achieve real time tracking. In this study only single-target sce-
narios have been taken into account, however in some prac-
tical circumstances multiple target tracking is required. Also 
implementing multi-target tracking with I/H-PMHT using PDIM 
data is another subject for future work.
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