In this study, we propose a preprocessing pipeline for the detection and correction of distorted frames in time-lapse images obtained from phase-contrast microscopy. The proposed pipeline employs the average intensities of frames as a foundational element for the analysis. In order to evaluate the degree of correction required for intensity variance, a normalization technique is applied to the difference between the average intensity of a specific frame and the median average intensity of all frames within the study. Our restoration method increases the histogram similarity between the distorted and non-distorted frames, preserves trans-passing pixels in regions of interest, and mitigates the development of additional distortions. The efficacy of the proposed method was evaluated using 15,395 time-lapse image frames from 27 experiments using our own dataset and 830 time-lapse images from four different experiments obtained from the cell tracking challenge. The results of the validation demonstrate a high degree of numerical and visual accuracy of the proposed pipeline.
Cite this article as: M. Ucar, et al., "Blank frame and intensity variation distortion detection and restoration pipeline for phase-contrast microscopy time-lapse images," Electrica, 24(1), 60-66, 2024.